Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3302-3314.doi: 10.3724/SP.J.1006.2023.34010

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet

ZHAO Xiao-Xin1,2(), HUANG Shuo-Qi1,2, TAN Wen-Bo1,2, XING Wang1,2, LIU Da-Li1,2,*()   

  1. 1National Beet Germplasm Mid-term Bank, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2Key Laboratory of Beet Genetics and Breeding / College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2023-01-13 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-16
  • Supported by:
    Youth Program of National Natural Science Foundation of China(31606229);Natural Science Foundation of Heilongjiang Province(LH2019C057);China Agriculture Research System of MOF and MARA(Sugar, CARS-170102);Ministry of Agriculture and Rural Affairs Project(19221878);Ministry of Agriculture and Rural Affairs Project(19211031);Ministry of Agriculture and Rural Affairs Project(19210911);Innovative Training Plan for Young Talents in Heilongjiang Ordinary Undergraduate Colleges and Universities(UNPYSCT-2020)

Abstract:

Cadmium (Cd) ion balance and detoxification regulation are the cores of exploring cadmium tolerance mechanism in sugar beet, and the basis of heavy metal bioremediation using sugar beet. Heavy metal-associated isoprene plant proteins (HIPPs) are a class of multifunctional metal chaperone proteins, which may play a key role in absorption, transport, and compartmentalization of Cd ions. In the transcriptome expression profile of sugar beet responding to cadmium stress, BvHIPPs were found to be differentially expressed. Based on the above results, the whole BvHIPPs gene family members in beet genome was identified by bioinformatics method, and their physicochemical properties, evolutionary relationships, gene structure, cis-acting elements, chromosome localization, transcription, and expression characteristics under cadmium stress were analyzed. The results showed that there were 23 BvHIPPs family members in the beet genome, all of which contained HMA domains and isoprenylation motif, and 16 BvHIPPs were predicted to be located in the nucleus. According to cis-acting element analysis, beet BvHIPPs can participate in a variety of biological and abiotic stress responses. Transcriptomic analysis showed that all 23 BvHIPPs differentially participated in sugar beet in response to Cd, and qRT-PCR analysis verified furtherly the regulatory characteristics of the BvHIPPs correlated with Cd response. BvHIPPs might play an essential role in the adaptation of sugar beet to cadmium stress. The results suggest that BvHIPPs may play an important role in the process of beet adaptation to cadmium stress, and the results will lay a foundation for the molecular mechanism of beet bioremediation in heavy metal pollution.

Key words: sugar beet, HIPPs, cadmium stress, gene family identification, transcriptional expression characteristics

Table 1

Primers for qRT-PCR used in this study"

基因Gene name 上游引物Forward primer (5°-3°) 下游引物Reverse primer (5°-3°)
BVRB_1g021330 AAGCAACAGAAGGTGACGGT GGGTGTGCCACCATAGTGTA
BVRB_3g050800 ATAAAAGGCGTGGTGGAGCC GGGTTCACCCTCATTTGCCG
BVRB_4g075740 AACACGGCGTATCCTAGCAG TATCAGACGGTGGAACTGCG
BVRB_6g135550 GCAAAAGCCACAGGGAAGAAG GTCCACCTTCCTGACATGACC
BVRB_3g053310 CTCAGTTGGGCCAGCAAAAG GTACGGAGGGTTGTAGCCG
BVRB_6g129220 GCCCGATCTGAAGTGTCCAT CTATGGGCCTGCCATCACAA
BVRB_7g161540 TTGTCCGCAAGTGTGATGGA CCTTCTTTGCAGGAGCAAGC
BVRB_5g126430 TCCTATTCCGAAACCACCCG GCATGTGAACCTTGAGCACC
BVRB_2g043150 TGTGGAGCCAAATAGGGTGC TTTGACATAGCCGGAGGGTG
BVRB_2g027600 ACAGGGCACGTAGATCCAAA GCCAGCAGGTGCTCTCTTAT
BVRB_9g214040 CGTGTGAAGCATCGAACAGG ACTCCAGGAGCGTAAGGGT
BVRB_5g104360 GTTCTGGCCTTACCCTAACCC GAGGGTGCCATGTCTATCACC
BVRB_3g055490 ATCAAAAGGGCAGGCAAAGC CCGTCGGAAGTGTCGTAGTAA
BVRB_4g081750 TTGCCAGCTTCCCACATGAT TGCGGATTCATCGGTACTGG
BVRB_3g069170 AAATGGGCCCTATGGGTTCG TGGAAGTATTCGGGTGCTGC
BVRB_7g164120 CTACCCGCACAGGCCATATC GTTGCTACTGCTCGATTGCG
BVRB_1g004050 AGGCGAAGCAGAAAGCTCTTA TGTTGTTGGCCAATACTTGCG
BVRB_5g122000 AGGTTGAGCCAGTGCCAATC ACTGCCTCTGTTGCTGATCG
BVRB_8g184430 TGTGGCGGTGGATCGAAAA GCATTTCGGCCCGTTTTGT
BVRB_3g053290 CACAGAAATTGTCTCAGTTGGGC GAAAGCCCGTTACAATCTCGC
BVRB_3g053300 TTGGCGATGTGGATCCTGTAG TTTGCAGGCCCAACTGAGAC
BVRB_6g142690 TGACCGGAAATGTGGAACCAA TGAGCAACGTAAGGGTAGGAC
BVRB_3g048110 CGTAGTATACCACCATCCGCC TTGATGGCTGCTCCAGTGTC
BvGAPDH GCTTTGAACGACCACTTCGC ACGCCGAGAGCAACTTGAAC

Table 2

Basic information of BvHIPPs gene family in Beta vulgaris L."

基因
Gene name
氨基酸数
Amino acid
number
分子量
Relative molecular
mas (kD)
等电点
Isoelectric
point
不稳定系数
Instability
index
脂肪系数
Aliphatic
index
平均亲水性
Hydrophilic
coefficient
亚细胞定位
Subcellular
localization
BVRB_6g129220 131 14.52 6.76 39.11 72.82 -0.355 未定位Not located
BVRB_7g161540 355 38.77 9.06 32.26 50.45 -1.251 细胞核 Nucleus
BVRB_5g126430 343 38.33 6.00 48.78 51.40 -1.301 细胞核 Nucleus
BVRB_3g050800 340 37.64 4.91 71.30 65.06 -0.926 细胞核 Nucleus
BVRB_2g043150 149 16.82 9.45 43.45 71.81 -0.556 细胞核 Nucleus
BVRB_2g027600 147 16.52 9.28 50.11 66.26 -0.559 细胞核 Nucleus
BVRB_6g135550 155 17.25 9.42 33.95 64.71 -0.561 未定位Not located
BVRB_1g021330 147 16.38 9.39 17.54 65.65 -0.416 线粒体 Mitochondrion
BVRB_9g214040 158 18.07 9.01 40.36 65.82 -0.676 线粒体, 细胞核
Mitochondrion, nucleus
BVRB_5g104360 143 16.47 9.17 34.27 70.77 -0.617 细胞核 Nucleus
BVRB_3g055490 134 14.84 6.28 36.58 72.84 -0.249 未定位Not located
BVRB_4g081750 508 53.07 9.35 47.01 32.62 -1.273 细胞核 Nucleus
BVRB_3g069170 562 55.92 9.85 49.7 34.63 -0.894 细胞核 Nucleus
BVRB_7g164120 417 44.63 8.11 67.82 58.56 -0.823 细胞核 Nucleus
BVRB_1g004050 167 19.32 7.60 52.93 65.93 -1.255 细胞核 Nucleus
BVRB_4g075740 345 37.67 6.19 52.19 45.16 -1.208 细胞核 Nucleus
BVRB_5g122000 137 14.99 9.05 41.58 73.14 -0.381 细胞核 Nucleus
BVRB_8g184430 297 34.30 6.62 56.84 62.59 -1.118 细胞核 Nucleus
BVRB_3g053290 132 14.88 8.85 40.62 73.03 -0.767 细胞核 Nucleus
BVRB_3g053300 127 14.16 8.28 27.07 94.88 -0.181 细胞核 Nucleus
BVRB_6g142690 101 11.21 9.67 48.14 100.99 -0.149 叶绿体, 细胞核
Chloroplast, nucleus
BVRB_3g048110 370 41.00 5.70 76.65 42.16 -1.253 细胞核 Nucleus
BVRB_3g053310 113 12.70 8.37 24.08 81.77 -0.295 叶绿体, 细胞质, 细胞核Chloroplast, cytoplasm, nucleus

Fig. 1

Phylogenetic tree of HIPPs in Beta vulgaris and Arabidopsis thaliana The red asterisk represents the BvHIPPs and the blue circle represents the AtHIPPs."

Fig. 2

Chromosome distribution and gene replication of BvHIPPs gene family in Beta vulgaris L. Both blue and yellow lines represent chromosome density."

Fig. 3

Conserved motif, domain, and gene structure of BvHIPPs gene family in Beta vulgaris L. A: motif; B: protein domain; C: genetic structure; D: motif amino acid sequence."

Fig. 4

Putative cis-acting element of BvHIPPs gene family in Beta vulgaris L."

Fig. 5

Relative expression profile of BvHIPPs in Beta vulgaris L. under cadmium stress CV_L and CV_R represent the relative expression levels of BvHIPPs genes in leaves and roots under normal growth conditions, respectively. Cd_L and Cd_R represent the relative expression levels of BvHIPPs genes in leaves and roots after 6 h treatment with 0.5 mmol L-1 CdCl2, respectively."

Fig. 6

Relative expression profile of BvHIPPs genes under cadmium stress Different uppercase letters indicate significant differences between groups in different times at P < 0.05; Different lowercase letters indicate significant differences between roots and leaves in the same time at P < 0.05."

[1] Eapen S, D’Souza S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv, 2005, 23: 97-114.
pmid: 15694122
[2] Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv, 2011, 29: 645-653.
doi: 10.1016/j.biotechadv.2011.04.006 pmid: 21557996
[3] Singh S, Parihar P, Singh R, Singh V P, Prasad S M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and lonomics. Frontiers Plant Sci, 2016, 6: 1143.
[4] Ying R R, Qiu R L, Tang Y T, Hu P J, Qiu H, Chen H R, Shi T H, Morel J L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaeicata. J Plant Physiol, 2010, 167: 81-87.
doi: 10.1016/j.jplph.2009.07.005
[5] Niekerk L A, Carelse M F, Bakare O O, Mavumengwana V, Keyster M, Gokul A. The relationship between cadmium toxicity and the modulation of epigenetic traits in plants. Int J Mol Sci, 2021, 22: 7046.
doi: 10.3390/ijms22137046
[6] Bali A S, Sidhu G P S, Kumar V. Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett, 2020, 18: 1243-1275.
doi: 10.1007/s10311-020-01012-x
[7] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[8] Nguyen A H, Hoying C R, Urbina T M, Drennan P. Effects of cadmium on growth, short-term photosynthetic acclimation and metal accumulation in radish plants (Raphanus sativus L.). Yearb Med Inform, 2017, 20: 78-86.
[9] Lei G J, Fujii-Kashino M, Wu D Z, Hisano H, Saisho D, Deng F L, Yamaji N, Sato K, Zhao F J, Ma J F. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nat Food, 2020, 1: 489-499.
doi: 10.1038/s43016-020-0130-x pmid: 37128077
[10] de Abreu-Neto J B, Turchetto-Zolet A C, de Oliveira L F V, Zanettini M H B, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J, 2013, 280: 1604-1616.
doi: 10.1111/febs.12159 pmid: 23368984
[11] Zschiesche W, Barth O, Daniel K, Bohme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.13419 pmid: 25913773
[12] Dykema P E, Sipes P R, Marie A, Biermann B J, Crowell D N, Randall S K. A new class of proteins capable of binding transition metals. Plant Mol Biol, 1999, 41: 139.
pmid: 10561075
[13] Tehseen M, Cairns N, Sherson S, Cobbett C S. Metallochaperone-like genes in Arabidopsis thaliana. Adv Exp Med Biol, 2010, 2: 556-564.
[14] Khan I U, Rono J K, Zhang B Q, Liu X S, Wang M Q, Wang L L, Wu X C, Chen X, Cao H W, Yang Z M. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicol Environ Saf, 2019, 175: 8-18.
doi: 10.1016/j.ecoenv.2019.03.040
[15] Zhang B Q, Liu X S, Feng S J, Zhao Y N, Wang L L, Rono J K, Li H, Yang Z M. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 2020, 247: 125985.
[16] Khan I U, Rono J K, Liu X S, Feng S J, Li H, Chen X, Yang Z M. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J Clean Prod, 2020, 272: 123152.
doi: 10.1016/j.jclepro.2020.123152
[17] Wiebke Z, Olaf B, Katharina D, Sandra B, Juliane R, Klaus H. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.2015.207.issue-4
[18] Radakovic Z S, Anjam M S, Escobar E, Chopra D, Cabrera J, Silva A C, Escobar C, Sobczak M, Grundler F M W, Siddique S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Mol Plant Pathol, 2018, 19: 1917-1928.
doi: 10.1111/mpp.2018.19.issue-8
[19] Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z. Isolation and characterization of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. Plant Biol (Stuttg), 2015, 17: 1176-1186.
doi: 10.1111/plb.2015.17.issue-6
[20] Cowan G H, Roberts A G, Jones S, Kumar P, Kalyandurg P B, Gil J F, Savenkov E I, Hemsley P A, Torrance L. Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement. Plant Physiol, 2018, 176: 2052-2070.
doi: 10.1104/pp.17.01698 pmid: 29374107
[21] Suzuki N, Yamaguchi Y, Koizumi N, Sano H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J, 2002, 32: 165-173.
doi: 10.1046/j.1365-313X.2002.01412.x
[22] Zhang H, Zhang X, Liu J, Niu Y, Chen Y M, Hao Y L, Zhao J, Sun L, Wang H Y, Xiao J, Wang X E. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species. Int J Mol Sci, 2020, 21: 6191.
doi: 10.3390/ijms21176191
[23] 王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析. 植物研究, 2019, 39: 935-946.
doi: 10.7525/j.issn.1673-5102.2019.06.017
Wang Q, Xu Z R, Chen J Y, Zang S, Huang J H, Liu G J. Identification and expression analysis of heavy metal- associated isoprenylated plant proteins (HIPPs) genes in Populus. Bull Bot Res, 2019, 39: 935-946. (in Chinese with English abstract)
[24] 钱方, 胡利娟, 余婕, 冯群, 左丹, 方正, 朱斌, 伍晓明. 甘蓝型油菜HIPPs基因家族的鉴定与表达分析. 植物遗传资源学报, 2022, 23: 1187-1201.
doi: 10.13430/j.cnki.jpgr.20211130001
Qian F, Hu L J, Yu J, Feng Q, Zuo D, Fang Z, Zhu B, Wu X M. Identification and expression analysis of HIPPs gene family in Brassica napus L. J Plant Genet Resour, 2022, 23: 1187-1201. (in Chinese with English abstract)
[25] 史淑芝, 程大友, 马凤鸣, 崔杰. 生物质能源作物: 能源甜菜的开发利用. 中国农学通报, 2007, 23(11): 416-419.
Shi S Z, Cheng D Y, Ma F M, Cui J. Exploitation and utilization of biomass energy crop-energy beet. Chin Agric Sci Bull, 2007, 23(11): 416-419. (in Chinese with English abstract)
[26] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433.
doi: 10.1038/nature22043
[27] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[28] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[29] Nguyen L T, Schmidt H A, Von Haeseler A, Minh B Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32: 268-274.
doi: 10.1093/molbev/msu300
[30] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416
[31] Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[32] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[33] de Souza M R, Teixeira R C, Daude M M, Augusto A N L, Sagio S A, de Almeida A F, Barreto H G. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods, 2021, 184: 106200.
doi: 10.1016/j.mimet.2021.106200
[34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[35] Zhang X Y, Chen D M, Zhong T Y, Zhang X M, Cheng M, Li X H. Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res Int, 2015, 22: 4932-4941.
doi: 10.1007/s11356-014-3892-6
[36] Bastabak B, Godekmerdan E, Kocar G. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. Chemosphere, 2021, 276: 130192.
doi: 10.1016/j.chemosphere.2021.130192
[37] Xu C H, Zhao Y Q, Yang B S. Mediating roles of metal ions in the structures and functions of metalloproteins. Prog Chem, 2013, 25: 520.
doi: 10.7536/PC121007
[38] Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H M, Jinn T L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005, 139: 425-436.
doi: 10.1104/pp.105.065284
[39] Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K. Stress induced and nuclear localized HIPP 26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol, 2009, 69: 213-226.
doi: 10.1007/s11103-008-9419-0 pmid: 18974936
[40] Cao H W, Li C, Zhang B Q, Zhang B Q, Rono J K, Yang Z M. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity. Agronomy, 2022, 12: 488.
doi: 10.3390/agronomy12020488
[41] Niu M Y, Bao C J, Zhan J Y, Yue X M, Zou J N, Su N A, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. Ecotoxicol Environ Saf, 2021, 227: 112920.
doi: 10.1016/j.ecoenv.2021.112920
[42] Xu Z C, Pu X D, Gao R R, Demurtas O C, Fleck S J, Richter M, He C N, Ji A J, Sun W, Kong J Q, Hu K Z, Ren F M, Song J J, Wang Z, Gao T, Xiong C, Yu H Y, Xin T Y, Albert V A, Giuliano G, Chen S L, Song J Y. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol, 2020, 18: 63.
doi: 10.1186/s12915-020-00795-3 pmid: 32552824
[43] Gautam B. Study of HIPP25, HIPP26, HIPP27 gene expression and glucosinolate content in Arabidopsis thaliana and Noccaea caerulescens upon heavy metal treatments. MS Thesis of Norwegian University of Science and Technology, Trondheim, Norway, 2017.
[44] Robinson N J, Winge D R. Copper metallochaperones. Annu Rev Biochem, 2010, 79: 537-562.
doi: 10.1146/annurev-biochem-030409-143539 pmid: 20205585
[45] Huang X Y, Deng F L, Yamaji N, Pinson S R M, Fujii-Kashino M, Danku J, Douglas A, Guerinot M L, Salt D E, Ma J F. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun, 2016, 7: 12138.
doi: 10.1038/ncomms12138
[46] Zheng P, Cao L, Zhang C, Pan W, Wang W, Yu X, Li Y, Fan T, Miao M, Tang X, Liu Y, Cao S. MYB43 as a novel substrate for CRL4 (PRL1) E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. New Phytol, 2022, 234: 884-901.
doi: 10.1111/nph.v234.3
[47] Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001.
doi: 10.1126/science.1175550 pmid: 19696351
[1] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[2] YU Chao, LI Guo-Long, SUN Ya-Qing, LI Ning-Ning, ZHANG Shao-Ying. Characteristics of respiratory metabolism in growth and development of sugar beet taproot [J]. Acta Agronomica Sinica, 2023, 49(12): 3377-3386.
[3] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[4] QU Meng-Xue, SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(11): 2945-2952.
[5] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[6] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[7] Chun-Yan HUANG,Wen-Bin SU,Shao-Ying ZHANG,Fu-Yi FAN,Xiao-Xia GUO,Zhi LI,Cai-Yuan JIAN,Xiao-Yun REN,Qian-Heng GONG. Effects of Potassium Application on Photosynthetic Performance, Yield, and Quality of Sugar Beet with Mulching-drip Irrigation [J]. Acta Agronomica Sinica, 2018, 44(10): 1496-1505.
[8] LI Zhi,LI Guo-Long,ZHANG Yong-Feng,YU Chao,SU Wen-Bin,FAN Fu-Yi,ZHANG Shao-Ying. Physiological Indices of High-Yielding Sugar Beet Under Drip Irrigation and Plastic Mulching [J]. Acta Agron Sin, 2017, 43(11): 1724-1730.
[9] LI Yang-Yang,FEI Cong,CUI Jing,WANG Kai-Yong,MA Fu-Yu,FAN Hua. Compensation Response of Drip-Irrigated Sugar Beets (Beta vulgaris L.) to Different Water Deficits during Storage Root Development [J]. Acta Agron Sin, 2016, 42(11): 1727-1732.
[10] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Central Cell before and after Fertilization in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2014, 40(01): 166-173.
[11] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2013, 39(12): 2220-2227.
[12] MA Lan,DU Hong-Yan,LI Rong-Tian. Seed-Setting Mode of Monosomic Addition Line M14 of Sugar Beet Beta corolliflora [J]. Acta Agron Sin, 2013, 39(03): 381-388.
[13] WANG Mao-Qian, WU Ze-Dong, WANG Hua-Zhong. Analysis of Genetic Diversity of Major Sugar Beet Varieties from Three Regions of China with SRAP Markers [J]. Acta Agron Sin, 2011, 37(05): 811-819.
[14] LI Ling, CHEN Jin-Gong, CHU Shui-Jin. Effects of Cadmium Stress on the Seed Quality Traits of Transgenic Cotton SGK3 and ZD-90 [J]. Acta Agron Sin, 2011, 37(05): 929-933.
[15] DING Chang-Hong,SHEN Jia-Heng,GUO De-Dong,SHANG Ya-Jia,LU Jun-Ping. Ultrastructure of Megasprogenesis in Faculative Apomictic Monosonic Addition Line M14  of Beta corolliflora of Sugar Beet [J]. Acta Agron Sin, 2009, 35(8): 1516-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .