Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1496-1505.doi: 10.3724/SP.J.1006.2018.01496

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Potassium Application on Photosynthetic Performance, Yield, and Quality of Sugar Beet with Mulching-drip Irrigation

Chun-Yan HUANG1,2,Wen-Bin SU2,Shao-Ying ZHANG1,*(),Fu-Yi FAN2,Xiao-Xia GUO2,Zhi LI1,2,Cai-Yuan JIAN2,Xiao-Yun REN2,Qian-Heng GONG2   

  1. 1 Agriculture College, Inner Mongolia Agriculture University, Hohhot 010019, Inner Mongolia, China
    2 Special Crops Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2018-03-01 Accepted:2018-07-20 Online:2018-10-10 Published:2018-08-01
  • Contact: Shao-Ying ZHANG E-mail:syzh36@aliyun.com
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-210302);the National Natural Science Foundation of China(31260347);the Youth Innovation Foundation of Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences(2014QNJJN08)

Abstract:

The technology of drip irrigation under mulch is widely used for sugar beet cultivation in cold and arid region of Inner Mongolia. In order to investigate proper potassium application rate and effects of potassium on photosynthetic characteristics, yield and quality on sugar beet with mulching-drip irrigation, a field experiment was conducted at Liangcheng city of Inner Mongolia in 2014-2015 with five treatments (0, 90, 180, 270, and 360 kg ha -1)potassium application. The results indicated that potassium could increase the photosynthetic performance of sugar beet, enhancing plant height, leaf area index and net photosynthetic rate. The treatments of 180, 270, and 360 kg ha -1 potassium fertilizer increased the net photosynthetic rate, which mainly affected by RuBPCase activity, followed by stomatal conductance. Proper potassium application benefited dry weigh increasing of roots, shoots and leaves, and yield increasing. But excessive application of potassium fertilizer significantly decreased the dry matter distribution to roots, and sugar content. There were the highest yield 270 kg ha -1 potassium application, the highest sugar content in the treatment of 90 kg ha -1 potassium and the largest economic benefits in the treatment of 180 kg ha -1potassium. When the application amount of potassium was more than 180 kg ha -1, the contents of K + and Na + increased in root. When the application amount of potassium was more than 270 kg ha -1, the content of α-amino acid in roots increased. According to the effects of potassium on sugar beet yield and quality, the recommended potassium fertilizer rate was 180 kg ha -1 in the main sugar beet planting area in Inner Mongolia.

Key words: potassium application, mulching-drip irrigation, sugar beet, photosynthetic performance, yield and quality

Table 1

Basic soil fertility of the experiment fields"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
全钾
Total K
(g kg-1)
碱解氮
Avail N
(mg kg-1)
有效磷
Avail P
(mg kg-1)
速效钾
Avail K
(mg kg-1)
pH
2014 9.88 0.49 0.82 19.68 64.82 13.9 103.7 8.13
2015 15.73 0.64 0.82 24.12 73.28 9.05 122.16 8.10

Table 2

Effect of potassium application on plant height of sugar beet (cm)"

处理
Treatment
2014 2015
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
K0 19.4±0.5 a 40.9±1.0 b 43.8±0.6 d 45.9±0.9 c 27.6±0.8 b 43.0±1.0 c 48.1±1.8 b 49.1±1.2 b
K90 19.7±0.4 a 43.5±0.7 ab 46.6±0.9 c 48.5±0.5 b 29.4±0.4 a 43.6±0.9 bc 51.6±1.6 ab 53.2±0.8 a
K180 20.3±0.3 a 43.9±1.3 ab 50.3±0.9 b 51.0±0.9 a 28.9±0.6 ab 46.3±1.1 ab 52.1±1.6 ab 54.2±1.4 a
K270 20.6±0.8 a 44.0±1.0 a 52.1±0.8 a 53.1±0.8 a 30.5±0.2 a 47.1±0.9 a 55.4±1.7 a 56.2±1.3 a
K360 19.4±0.6 a 41.1±0.9 ab 46.8±1.0 bc 47.3±0.9 c 28.9±0.7 ab 45.0±0.7 abc 52.6±0.9 ab 52.0±1.8 ab

Table 3

Effect of potassium application on leaf area index of sugar beet"

处理
Treatment
2014 2015
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
K0 0.43±0.01 a 1.59±0.03 b 2.52±0.09 c 2.09±0.02 c 0.56±0.01 b 2.09±0.09 b 2.61±0.13 b 2.08±0.14 c
K90 0.48±0.02 a 1.68±0.05 b 2.58±0.06 c 2.18±0.06 bc 0.66±0.01 ab 2.21±0.04 b 2.65±0.07 b 2.43±0.20 bc
K180 0.47±0.03 a 1.73±0.09 b 2.75±0.12 c 2.27±0.07 b 0.70±0.02 ab 2.30±0.04 b 2.88±0.06 b 2.56±0.10 b
K270 0.49±0.01 a 2.24±0.15 a 3.55±0.10 a 2.61±0.08 a 0.76±0.02 a 2.53±0.06 a 3.49±0.17 a 3.13±0.10 a
K360 0.45±0.01 a 2.10±0.09 a 3.25±0.11 b 2.31±0.04 b 0.70±0.02 ab 2.58±0.10 a 3.38±0.09 a 3.15±0.13 a

Fig. 1

Effect of potassium application on photosynthetic characteristics of sugar beet Abbreviations are the same as those given in Table 2."

Fig. 2

Effect of potassium application on RuBPCase activity of sugar beet Abbreviations are the same as those given in Table 2."

Table 4

Correlational coefficients of sugar beet Pn with Gs, Tr, Ci, and RuBPCase activity"

生育时期
Growth period
气孔导度
Gs
蒸腾速率
Tr
胞间CO2浓度
Ci
RuBPCase活性
RuBPCase activity
RDFS 0.752 0.720 0.759 0.995**
LGFS 0.960** 0.627 0.858* 0.993**
RSIS 0.868* 0.993** 0.610 0.997**
SCAS 0.995** 0.983** 0.828* 0.984**

Fig. 3

Effects of potassium application on dry matter accumulation and distribution in sugar beet Abbreviations are the same as those given in Table 2."

Table 5

Effect of potassium application on yield and quality of sugar beet"

年份
Year
处理
Treatment
产量
Yield
(kg hm-2)
含糖率
Sugar content
(%)
K+含量
K+ content
(μmol g-1 FW)
Na+含量
Na+ content
(μmol g-1 FW)
α-氨基酸含量
α-amino acid
(μmol g-1 FW)
2014 K0 58536.43±642.15 d 16.50±0.15 b 36.28±0.59 a 4.50±0.13 d 9.98±0.21 c
K90 63205.16±765.08 c 17.43±0.10 a 36.68±0.34 a 6.48±0.28 c 10.38±0.17 c
K180 66201.89±254.42 b 17.26±0.08 a 38.43±0.52 a 9.93±0.37 a 10.73±0.39 c
K270 68475.90±730.50 a 16.53±0.18 b 39.10±0.27 a 8.98±0.19 b 15.30±0.11 b
K360 67167.40±688.93 ab 15.90±0.27 c 39.65±0.40 a 5.78±0.28 c 16.20±0.37 a
2015 K0 65182.51±875.45 d 16.02±0.15 b 39.18±0.30 b 6.70±0.31 c 14.95±0.30 b
K90 70363.43±582.09 c 16.96±0.10 a 39.30±0.44 b 7.30±0.09 abc 15.20±0.15 b
K180 74490.63±641.28 b 16.83±0.21 a 39.38±0.50 a 7.80±0.36 a 15.48±0.49 b
K270 77698.13±1005.27 a 15.95±0.07 b 40.25±0.23 a 7.53±0.26 ab 17.53±0.25 a
K360 75395.81±894.22 b 15.65±0.08 b 42.85±0.37 a 6.83±0.24 bc 18.13±0.34 a

Table 6

Correlational coefficients of sugar beet yield and quality with some indices"

指标
Index
产量
Yield
含糖率
Sugar content
K+含量
K+ content
Na+含量
Na+ content
α-氨基酸含量
α-amino acid
株高 Plant height 0.859 0.173 0.336 0.512 0.433
叶面积指数Leaf area index 0.695 -0.638 0.987** -0.174 0.892*
净光合速率Pn 0.995** -0.164 0.740 0.338 0.737
块根干重 Root dry weigh 0.957* 0.101 0.559 0.562 0.545
叶柄干重 Shoot dry weigh 0.955* -0.423 0.917* 0.097 0.900*
叶片干重 Leaf dry weigh 0.955* -0.432 0.915* 0.084 0.907*
块根干物质分配比例 Distribution ratio of root dry matter -0.214 0.921* -0.774 0.710 -0.764
叶柄干物质分配比例 Distribution ratio of shoot dry matter -0.209 -0.840 0.444 -0.851 0.448
叶片干物质分配比例 Distribution ratio of leaf dry matter 0.522 -0.866 0.936* -0.507 0.917*

Fig. 4

Effect of potassium application on sugar yield of sugar beet Different letters above error bars indicate significant difference at the 0.05 probability level."

[1] 屈冬玉, 谢开云, 金黎平, 庞万福, 卞春松, 段绍光 . 中国马铃薯产业发展与食物安全. 中国农业科学, 2005,38:358-362
Qu D Y, Xie K Y, Jin L P, Pang W F, Bian C S, Duan S G . Development of potato industry and food security in China. Sci Agric Sin, 2005,38:358-362 (in Chinese with English abstract)
[2] 李智, 李国龙, 张永丰, 于超, 苏文斌, 樊福义, 张少英 . 膜下滴灌条件下高产甜菜灌溉的生理指标. 作物学报, 2017,43:1724-1730
Li Z, Li G L, Zhang Y F, Yu C, Su W B, Fan F Y, Zhang S Y . Physiological indices of high-yielding sugar beet under drip irrigation and plastic mulching. Acta Agron Sin, 2017,43:1724-1730 (in Chinese with English abstract)
[3] 苏文斌, 黄春燕, 樊福义, 郭晓霞, 宫前恒, 任霄云 . 甜菜膜下滴灌高产优质农艺栽培措施的研究. 中国糖料, 2016,38(1):15-18
doi: 10.13570/j.cnki.scc.2016.01.006
Su W B, Huang C Y, Fan F Y, Guo X X, Gong Q H, Ren X Y . Studies on cultivation of high yield and quality of sugar beet with drip irrigation under plastic film. Sugar Crops China, 2016,38(1):15-18 (in Chinese with English abstract)
doi: 10.13570/j.cnki.scc.2016.01.006
[4] 邵金旺, 蔡葆, 张家骅 . 甜菜生理学. 北京: 农业出版社, 1991. pp 162-194
Shao J W, Cai B, Zhang J H . Sugar Beet Physiology. Beijing: Agriculture Press, 1991. pp 162-194(in Chinese)
[5] 曲扬 . 钾对甜菜主要营养的影响. 中国甜菜糖业, 2006, ( 2):5-12
doi: 10.3969/j.issn.1002-0551.2006.02.002
Qu Y . Affection of potassium to sugar beet main nutrition. China Beet Sugar, 2006, ( 2):5-12 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-0551.2006.02.002
[6] 黄春燕, 张少英, 苏文斌, 樊福义, 郭晓霞, 任霄云, 宫前恒 . 施钾量对高产甜菜光合特性、干物质积累和产量的影响. 东北师大学报(自然科学版), 2016,48(3):120-125
Huang C Y, Zhang S Y, Su W B, Fan F Y, Guo X X, Ren X Y, Gong Q H . Effects of potassium fertilizer on main physiological characteristics, dry matter accumulation and yield of high yield sugar beet. J Northeast Norm Univ(Nat Sci Edn), 2016,48(3):120-125 (in Chinese with English abstract)
[7] Hassanli A M, Ahmadirad S, Beecham S . Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency. Agric Water Manage, 2010,97:357-362
doi: 10.1016/j.agwat.2009.10.010
[8] Kiymaz S, Ertek A . Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric Water Manage, 2015,158:225-234
[9] 李智, 李国龙, 刘蒙, 张永丰, 尹成怀, 张少英 . 膜下滴灌条件下甜菜水分代谢特点的研究. 节水灌溉, 2015, ( 9):52-56
Li Z, Li G L, Liu M, Zhang Y F, Yin C H, Zhang S Y . Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation. Water Saving Irrig, 2015, ( 9):52-56 (in Chinese with English abstract)
[10] 张蜀秋 . 植物生理学实验技术教程. 北京: 科学出版社, 2011. pp 93-95
Zhang S Q. Experimental Techniques Course of Plant Physiology. Beijing: Science Press, 2011. pp 93-95(in Chinese)
[11] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛 . 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014,30(10):82-90
doi: 10.3969/j.issn.1002-6819.2014.10.010
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y . Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014,30(10):82-90 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2014.10.010
[12] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和 . 春季低温对小麦产量和光合特性的影响. 作物学报, 2018,44:288-296
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H . Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018,44:288-296 (in Chinese with English abstract)
[13] Han Q . Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol, 2011,31:976-984
[14] Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J B, Very A A, Simonneau T, Sentenac H . Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA, 2008,105:5271-5276
doi: 10.1073/pnas.0709732105
[15] 汪顺义, 李欢, 刘庆, 史衍玺 . 施钾对甘薯根系生长和产量的影响及其生理机制. 作物学报, 2017,43:1057-1066
doi: 10.3724/SP.J.1006.2017.01057
Wang S Y, Li H, Liu Q, Shi Y X . Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism. Acta Agron Sin, 2017,43:1057-1066 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01057
[16] 陈凤真 . 钾对黄瓜根系保护酶和光合特性的影响. 西北农林科技大学学报(自然科学版), 2015,43(7):127-132
Chen F Z . Effects of potassium on activities of root protective enzymes and photosynthetic characteristics of cucumber (Cucumis sativus L.). J Northwest A&F Univ (Nat Sci Edn), 2015,43(7):127-132 (in Chinese with English abstract)
[17] 柳洪鹃, 史春余, 柴沙沙, 王翠娟, 任国博, 江燕, 司成成 . 不同时期施钾对甘薯光合产物运转动力的调控. 植物营养与肥料学报, 2015,21:171-180
Liu H J, Shi C Y, Chai S S, Wang C J, Ren G B, Jiang Y, Si C C . Effect of different potassium application time on the vigor of photosynthate transportations of edible sweet potato (Ipomoea batata L.). Plant Nutr Fert Sci, 2015,21:171-180 (in Chinese with English abstract)
[18] Epstein E, Bloom A J . Mineral Nutrition of Plants: Principles and Perspective. Sunderland, US: Sinauer Associates, 2005. pp 33-38
[19] 赵平, 林克惠 . 钾肥对农作物品质的影响. 云南农业大学学报, 2011,16(1):56-59
Zhao P, Lin K H . Effect of potassium fertilizer on quality of crops. J Yunnan Agric Univ, 2011,16(1):56-59 (in Chinese with English abstract)
[20] 丁伟, 曲文章 . 不同施钾水平与甜菜产质量关系的研究. 中国糖料, 2002, ( 3):17-18
doi: 10.3969/j.issn.1007-2624.2002.03.005
Ding W, Qu W Z . Relationship between potassium level applied and sugar beet yield and quality. Sugar Crops China, 2002, ( 3):17-18 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-2624.2002.03.005
[21] 曲扬, 丁伟, 曲文章 . 钾对甜菜干物质积累分配及产量的影响. 中国甜菜糖业, 2008, ( 3):4-8
Qu Y, Ding W, Qu W Z . Affection of potassium to sugar beet dry material accumulation and distribution and yield. China Beet Sugar, 2008, ( 3):4-8 (in Chinese with English abstract)
[22] Muhammad U M, Muhammad Z, Sagheer A, Abdul W . Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. J Integr Agric, 2016,15:2620-2626
doi: 10.1016/S2095-3119(15)61252-7
[23] 张文元, 牛德奎, 郭晓敏, 李小梅, 胡冬南 . 施钾水平对油茶养分积累和产油量的影响. 植物营养与肥料学报, 2016,22:863-868
doi: 10.11674/zwyf.14439
Zhang W Y, Niu D K, Guo X M, Li X M, Hu D N . Effect of different levels of potassium fertilization on nutrient accumulation and oil yield of Camellia oleifera Abel. Plant Nutr Fert Sci, 2016,22:863-868 (in Chinese with English abstract)
doi: 10.11674/zwyf.14439
[24] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 元振, 王雨, 代丹丹, 魏星, 李银银, 刘孝成 . 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016,22:590-597
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Yuan Z, Wang Y, Dai D D, Wei X, Li Y Y, Liu X C . Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat. Plant Nutr Fert Sci, 2016,22:590-597 (in Chinese with English abstract)
[1] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[2] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[3] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[4] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[5] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[6] JIANG Zhong-Yu, TANG Li-Xue, LIU Hong-Juan, SHI Chun-Yu. Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1750-1759.
[7] LI Zhi,LI Guo-Long,ZHANG Yong-Feng,YU Chao,SU Wen-Bin,FAN Fu-Yi,ZHANG Shao-Ying. Physiological Indices of High-Yielding Sugar Beet Under Drip Irrigation and Plastic Mulching [J]. Acta Agron Sin, 2017, 43(11): 1724-1730.
[8] LIU Zhao-Xin,LIU Yan,LIU Ting-Ru,HE Mei-Juan,YAO Yuan,YANG Jian-Qun,ZHEN Xiao-Yu,LI Xin-Xin,YANG Dong-Qing,LI Xing-Dong*. Effect of Controlled-Release Compound Fertilized on Photosystem II Performance, Yield and Quality of Intercropped Peanut with Wheat [J]. Acta Agron Sin, 2017, 43(11): 1667-1676.
[9] ZHENG Bin,ZHAO Wei,XU Zheng,GAO Da-Peng,JIANG Yuan-Yuan,LIU Peng,LI Zeng-Jia,LI Geng*,NING Tang-Yuan*. Effects of Tillage Methods and Nitrogen Fertilizer Types on Photosynthetic Performance of Summer Maize [J]. Acta Agron Sin, 2017, 43(06): 925-934.
[10] LI Yang-Yang,FEI Cong,CUI Jing,WANG Kai-Yong,MA Fu-Yu,FAN Hua. Compensation Response of Drip-Irrigated Sugar Beets (Beta vulgaris L.) to Different Water Deficits during Storage Root Development [J]. Acta Agron Sin, 2016, 42(11): 1727-1732.
[11] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Central Cell before and after Fertilization in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2014, 40(01): 166-173.
[12] LI Wei,SHEN Jia-Heng,GUO De-Dong. Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta vulgaris) [J]. Acta Agron Sin, 2013, 39(12): 2220-2227.
[13] MA Lan,DU Hong-Yan,LI Rong-Tian. Seed-Setting Mode of Monosomic Addition Line M14 of Sugar Beet Beta corolliflora [J]. Acta Agron Sin, 2013, 39(03): 381-388.
[14] LI Bo,ZHANG Ji-Wang,CUI Hai-Yan,JIN Li-Bin,DONG Shu-Ting,LIU Peng,ZHAO Bin. Effects of Potassium Application Rate on Stem Lodging Resistance of Summer Maize under High Yield Conditions [J]. Acta Agron Sin, 2012, 38(11): 2093-2099.
[15] LI Zong-Tai, CHEN Er-Ying, ZHANG Mei-Ling, ZHAO Qiang-Long, XU Xiao-Long, JI Hong, SONG Xian-Liang, SUN Xue-Zhen. Effect of Potassium Application Methods on Antioxidant Enzyme Activities, Yield and Potassium Use Efficiency of Cotton [J]. Acta Agron Sin, 2012, 38(03): 487-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!