Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3377-3386.doi: 10.3724/SP.J.1006.2023.34026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of respiratory metabolism in growth and development of sugar beet taproot

YU Chao(), LI Guo-Long, SUN Ya-Qing, LI Ning-Ning, ZHANG Shao-Ying*()   

  1. Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2023-02-10 Accepted:2023-05-24 Online:2023-12-12 Published:2023-05-29
  • Contact: * E-mail: syzh36@aliyun.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Sugar, CARS-170201);National Natural Science Foundation of China(31260347)

Abstract:

Respiration is an important metabolic basis for plant growth and development. The objective of this study is to compare the differences of taproot development characteristics, respiratory rate, respiratory key enzyme activity, gene expression, and energy change in different growth stages, and analyze the relationship between various respiratory physiological and sugar accumulation of sugar beet roots. In this study, four different genotypes of sugarbeet varieties were used as the experimental materials. The key enzyme activity and gene expression of respiratory metabolic pathway were determined, and respiratory pathway inhibitors were used at different growth stages. These results indicated the EMP-TCA was the main respiratory metabolic pathway during the growth process in beet taproot. No matter which respiratory pathway was inhibited, the weight and diameter of beet taproot can be reduced. Different respiratory metabolic pathways (EMP, TCA, and PPP) all played the important roles in promoting taproot expansion. In conclusions, this study laid a theoretical foundation for further research on the physiological mechanism of sugarbeet taproot, and provided physiological indicators for the breeding and identifying high-yield sugarbeet.

Key words: sugar beet, respiratory rate, respiratory enzyme activity, gene expression, ATP

Table 1

Primers for qRT-PCR used in this study"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
ACTIN TGCTTGACTCTGGTGATGGT AGCAAGATCCAAACGGAGAATG
PK TTCGCTGCCTCTGCTGCTACTA AAATGAGATGTTTCACGCCTTC
HK GCGACGTTATGGTTGAGGTTAT ACTCTTCCAACTCCCTCAACAC
IDH GCAACCATCACACCAGATGAA AAGACCGTGCCATTAAGGATGT
SDH AGATCGCCTCCGATTCTCTCTAC GCCTCCATTCCAACAGCAA
G6PDH ATGGATCTCCCTACCAGTCG CTCATCAAAATAGCCACCTCT
6PGDH AGTCTGCCTAGCTATCAACTCGG TGACTGTCTCGCAATCTTGAAC

Fig. 1

Difference of morphological of taproot in different genotypes of sugarbeet at different growth stages SS, RFGS, RSGS, and SAS indicate seedling stage, rapid foliage growth stage, root and sugar growth stage, and sugar accumulation stage, respectively."

Fig. 2

Difference of fresh weight and sugar content in taproot of different sugarbeet genotypes at different growth stages Abbreviations for the different growth stages are the same as those given in Fig. 1."

Fig. 3

Difference of taproot respiration rate in different sugarbeet genotypes at different growth stages Abbreviations for the different growth stages are the same as those given in Fig. 1."

Table 2

Correlation between respiration rate and taproot weight, sugar content in sugarbeet"

项目
Item
呼吸速率 Respiration rate
苗期SS 叶丛快速生长期RFGS 块根及糖分增长期RSGS 糖分积累期SAS
根重Root weight 0.45 0.81** 0.84** 0.77**
含糖率Sugar content 0.25 -0.53 -0.41 -0.60*

Fig. 4

Activity differences of key enzymes in respiratory metabolism pathway in taproot of different sugarbeet genotypes at different growth stages Bars superscripted by different lowercase letters indicate significantly different at the 0.05 probability level. Abbreviations for the different growth stages are the same as those given in Fig. 1."

Table 3

Correlation between key enzyme activities of respiratory metabolism pathway and taproot weight, sugar content in sugarbeet"

生育时期
Growth stage
项目
Item
酶活性Enzyme activity
丙酮酸激酶PK 己糖激酶HK 异柠檬酸
脱氢酶
IDH
琥珀酸
脱氢酶
SDH
葡萄糖-6-磷酸脱氢酶G6PDH 6-磷酸葡萄糖酸脱氢酶6PGDH
叶丛快速生长期RFGS 根重Taproot weight -0.67* -0.34 0.86** 0.75** -0.70* 0.83**
含糖率Sugar content 0.58 0.09 -0.67* -0.45 0.54 -0.67*
块根及糖分增长期RSGS 根重Taproot weight 0.83** 0.51 0.79** 0.62* 0.82** -0.58*
含糖率Sugar content -0.81** -0.73** -0.52 -0.64* -0.84** 0.78**
糖分积累期SAS 根重Taproot weight 0.74** -0.55 0.78** -0.14 -0.06 -0.45
含糖率Sugar content -0.86** 0.41 -0.93** -0.11 -0.01 0.17

Fig. 5

Differences in gene expression of key enzymes in respiratory metabolism pathway among the different sugarbeet genotypes at different growth stages Bars superscripted by different lowercase letters are significantly different in the 0.05 probability level. Abbreviations for the different growth stages are the same as those given in Fig. 1."

Fig. 6

Effects of respiratory inhibitors on the taproot respiration rate and phenotype of different genotypes in sugarbeet Bars superscripted by different lowercase letters indicate significantly different in the 0.05 probability level."

Fig. 7

Difference of root energy metabolism in different sugarbeet genotypes at different growth stages Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

Table 4

Correlation between energy metabolism and taproot weight, sugar content in sugarbeet"

项目
Item
ATPase活性 ATPase activity ATP含量 ATP content
叶丛快速
生长期
RFGS
块根及糖分
增长期
RSGS
糖分积累期
SAS
叶丛快速
生长期
RFGS
块根及糖分
增长期
RSGS
糖分积累期SAS
根重Taproot weight 0.80** 0.80** 0.81** 0.85** 0.84** 0.52
含糖率Sugar content -0.36 -0.64* -0.90** -0.64* -0.81** -0.71**
[1] 刘佳, 薛惠云, 李倩, 张志勇. 不同年代小麦品种根系形态差异性分析. 山东农业科学, 2021, 53(3): 15-21.
Liu J, Xue H Y, Li Q, Zhang Z Y. Difference analysis of root morphology of wheat varieties among different eras. Shandong Agric Sci, 2021, 53(3): 15-21. (in Chinese with English abstract)
[2] Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytol, 1994, 127: 635-674.
doi: 10.1111/j.1469-8137.1994.tb02969.x pmid: 33874383
[3] 曲梦雪, 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响. 作物学报, 2022, 48: 2945-2952.
doi: 10.3724/SP.J.1006.2022.13077
Qu M X, Song J, Sun J, Hu D D, Wang H Z, Ren H, Zhao B, Zhang J W, Ren B Z, Liu P. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage. Acta Agron Sin, 2022, 48: 2945-2952. (in Chinese with English abstract)
[4] 张秋月. 复合胁迫对东北山樱根系生理生化特性的影响. 沈阳农业大学硕士学位论文,辽宁沈阳, 2020.
Zhang Q Y. Effects on Physiological and Biochemical Characteristics of Cerasus sachalinensis Roots under Combined Stress. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[5] Van Der Merwe M J, Osorio S, Araujo W L, Albo I, Nunes-Nesi A, Maximova E, Carrari F, Bunik V I, Persson S, Fernie A R. Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production. Plant Physiol, 2010, 153: 611-621.
doi: 10.1104/pp.109.149047
[6] Howell P G, Levin E A, Springer A L, Kraemer S M, Phippard D J, Schief W R, Smith J D. Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol Microbiol, 2008, 67: 78-87.
[7] 于乔乔. 低温胁迫下玉米幼苗光合及呼吸代谢特性的研究. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2021.
Yu Q Q. Study on the Characteristics of Photosynthesis and Respiratory Metabolism of Maize Seedlings under Low Temperature Stress. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract)
[8] 王军可. 灌浆初期高温影响粳稻籽粒碳氮代谢变化的机理及其调控. 中国农业科学院硕士学位论文,北京, 2021.
Wang J K. Mechanism and Regulation of High Temperature at the Early Stage of Grain Filling on Changes in Carbon and Nitrogen Metabolism of Japonica Rice Grains. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[9] 任晓松, 王子沐, 焦健, 田礼欣, 刘赵月, 李晶. GA3处理对低温胁迫条件下玉米种子呼吸代谢的影响. 生态学杂志, 2020, 39: 847-854.
Ren X S, Wang Z M, Jiao J, Tian L X, Liu Z Y, Li J. Effects of GA3 treatment on respiratory metabolism of maize seeds under low temperature stress. Chin J Ecol, 2020, 39: 847-854. (in Chinese with English abstract)
[10] 刘丽杰, 苍晶, 李怀伟, 于晶, 王兴, 王健飞, 黄儒, 徐琛. 外源ABA对冬小麦越冬期呼吸代谢关键酶与糖代谢的影响. 麦类作物学报, 2013, 33: 65-72.
Liu L J, Cang J, Li H W, Yu J, Wang X, Wang J F, Huang R, Xu C. Effects of exogenous abscisic acid on key enzymes of respiratory metabolism and sugar metabolism of winter wheat in the wintering period. J Triticeae Crops, 2013, 33: 65-72. (in Chinese with English abstract)
[11] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析. 作物学报, 2022, 48: 2100-2144.
doi: 10.3724/SP.J.1006.2022.14110
Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Analysis of metabolites and pathways in cotton under salt and alkali stresses. Acta Agron Sin, 2022, 48: 2100-2144 (in Chinese with English abstract).
[12] 陈海浪, 陈喜文, 陈德富. NAD+-依赖型异柠檬酸脱氢酶的结构和功能研究进展. 生物技术通讯, 2003, 14: 304-307.
Chen H L, Chen X W, Chen D F. Advance on structure and function of NAD+-dependent isocitrate dehydrogenase. Lett Biotechnol, 2003, 14: 304-307. (in Chinese with English abstract)
[13] 陈一鸣, 王涛, 张凤姣, 庄维兵, 束晓春, 王忠, 杨清. 南方红豆杉野生种与栽培品种‘金锡杉’针叶代谢物的比较分析. 西北植物学报, 2019, 39: 801-807.
Chen Y M, Wang T, Zhang F J, Zhuang W B, Shu X C, Wang Z, Yang Q. Comparison of metabolites in the needles of Taxus wallichiana var., Mairei and Taxus wallichiana var., Mairei cv., ‘Jinxishan’. Acta Bot Boreali-Occident Sin, 2019, 39: 801-807. (in Chinese with English abstract)
[14] 张旭. 水分亏缺对小麦旗叶与穗部C3, C4光合途径关键酶及其中间产物代谢的影响. 西北农林科技大学硕士学位论文,陕西杨凌, 2019.
Zhang X. Effects of Water Deficit on C3 and C4 Photosynthesis Enzymes and Primary Carbon Metabolism in Wheat Flag Leaves and Spikes. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract)
[15] 马春媚. 一氧化氮对桃果实三羧酸循环相关酶活性及蛋白质结构的影响. 山东农业大学硕士学位论文,山东泰安, 2013.
Ma C M. Effects of Nitric Oxide on Activities and Structure of Enzymes in Tricarboxylic Acid Cycle. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2013. (in Chinese with English abstract)
[16] 李晓炜. 种子萌发过程中呼吸关键酶调控物质能量代谢规律研究. 兰州大学硕士学位论文,甘肃兰州, 2016.
Li X W. The Law of Material and Energy Metabolism Regulated by the Key Enzyme of Respiration in the Process of Seed Germination. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2016. (in Chinese with English abstract)
[17] Smiri M, Chaoui A, Ferjani E E. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol, 2009, 166: 259-269.
doi: 10.1016/j.jplph.2008.05.006
[18] Peng Y, Niklas K J, Reich P B, Sun S. Ontogenetic shift in the scaling of dark respiration with whole-plant mass in seven shrub species. Funct Ecol, 2010, 24: 502-512.
doi: 10.1111/fec.2010.24.issue-3
[19] Zhang X, Wei X, Ali M, Rizwan H, Li B, Li H, Jia K, Yang X, Ma S, Li S. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. Int J Mol Sci, 2021, 22: 5765.
doi: 10.3390/ijms22115765
[20] Bailey-Serres J, Tom J, Freeling M. Expression and distribution of cytosolic 6-phosphogluconate dehydrogenase isozymes in maize. Biochem Genet, 1992, 30: 233-246.
pmid: 1616479
[21] Hauschild R, Von Schaewen A. Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol, 2003, 133: 47-62.
doi: 10.1104/pp.103.025676 pmid: 12970474
[22] Huang J, Zhang H, Wang J, Yang J. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stressa. Mol Biol Rep, 2003, 30: 223-227.
pmid: 14672408
[23] 王玮. BvBZR1基因调控甜菜块根发育的功能分析. 内蒙古农业大学博士学位论文,内蒙古呼和浩特, 2021.
Wang W. Functional Analysis of BvBZRl Gene in Regulating Taproot Development in Sugar Beet (Beta vulgaris L.). PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021. (in Chinese with English abstract)
[24] 邵金旺, 蔡葆, 张家骅. 甜菜生理学. 北京: 农业出版社, 1991. pp 1-4.
Shao J W, Cai B, Zhang J H. Sugar Beet Physiology. Beijing: Agriculture Press, 1991. pp 1-4. (in Chinese)
[25] 郇町, 胡华兵, 贺碧微, 孙琳琳, 刘建雄, 刘珣, 袁团团, 丁兆斐. 不同引进甜菜品种经济性状关系分析. 中国农学通报, 2023, 39(3): 11-19.
doi: 10.11924/j.issn.1000-6850.casb2022-0021
Xun D, Hu H B, He B W, Sun L L, Liu J X, Liu X, Yuan T T, Ding Z F. Economic characters of introduced sugar beet varieties: relationship analysis. Chin Agric Sci Bull, 2023, 39(3): 11-19. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2022-0021
[26] 吴珏, 谢文华, 徐淑婷, 曹锦萍, 王岳, 孙崇德. 高压静电场处理对椪柑采后贮藏性的影响. 浙江大学学报(农业与生命科学版), 2020, 46: 64-73.
Wu J, Xie W H, Xu S T, Cao J P, Wang Y, Sun C D. Effect of high voltage electrostatic field treatment on the storability of postharvest ponkan fruit. J Zhejiang Univ (Agric Life Sci), 2020, 46: 64-73. (in Chinese with English abstract)
[27] 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展. 植物生理学报, 2011, 47: 957-966.
Li Z X, Qin S J, Lyu D G, Nie J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors. Plant Physiol J, 2011, 47: 957-966. (in Chinese with English abstract)
[28] 郭文双. 内蒙古高寒地区甜菜品种适应性筛选与评价. 吉林农业大学硕士学位论文,吉林长春, 2020.
Guo W S. Adaptability Screening and Evaluation of Sugarbeet Varieties in Inner Mongolia. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2020 (in Chinese with English abstract).
[29] 朱芳慧. 甜菜表型特征及其与产质量关系的研究. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特, 2020.
Zhu F H. Study on the Phenotypic Characteristics of Sugar Beet and Its Relationship with Yield and Quality. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2020. (in Chinese with English abstract)
[30] 陈晓晶, 徐忠山, 赵宝平, 米俊珍, 严威凯, 刘景辉. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响. 生态学杂志, 2021, 40: 2773-2782.
Chen X J, Xu Z S, Zhao B P, Mi J Z, Yan W K, Liu J H. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activity and yield of oat. Chin J Ecol, 2021, 40: 2773-2782. (in Chinese with English abstract)
[31] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究. 作物学报, 2022, 48: 1996-2006.
doi: 10.3724/SP.J.1006.2022.13047
Wang T B, He W X, Zhang J M, Lyu W Z, Liang Y H, Lu Y, Wang Y L, Gu F X, Song C, Chen J Y. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos. Acta Agron Sin, 2022, 48: 1996-2006. (in Chinese with English abstract)
[32] Henry M, Besnard A, Asante W A, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andrén L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 2010, 260: 1375-1388.
doi: 10.1016/j.foreco.2010.07.040
[33] Moore S, Adu-Bredu S, Duah-Gyamfi A, Addo-Danso S D, Ibrahim F, Mbou A T, Grandcourt A, Valentini R, Nicolini G, Djagbletey G, Owusu-Afriyie K, Gvozdevaite A, Oliveras I, Ruiz-Jaen M C, Malhi Y. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Global Change Biol, 2017, 24: 496-510.
[34] 李春萍, 王世伟, 丁俊杰, 潘存德, 马彬, 努尔夏提·克里木江, 米热丁·艾海提, 祖力皮卡尔·吐松. 施氮水平对核桃细根呼吸速率及相关酶活性的影响. 林业科学研究, 2019, 32(6): 56-62.
Li C P, Wang S W, Ding J J, Pan C D, Ma B, Nurxat K, Mihirdin A, Zulpikar T. Effects of nitrogen application level on respiration rate and related enzyme activities of walnut roots. For Res, 2019, 32(6): 56-62. (in Chinese with English abstract)
[35] 白书农, 肖翊华. 杂交水稻根系生长与呼吸强度的研究. 作物学报, 1988, 14: 53-59.
Bai S N, Xiao Y H. Studies on the root growth and respiration of hybrid rice. Acta Agron Sin, 1988, 14: 53-59. (in Chinese with English abstract)
[36] 王雪峰. 基于iTRAQ技术对甜菜块根膨大蛋白质组学的研究. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特, 2016.
Wang X F. The Proteomics Research of Tap Root Inflation in Sugar Beet (Beta vulgaris L.) by iTRAQ. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract)
[37] 时鹏涛. 转基因抗虫棉花不同发育期叶片蛋白质组的比较分析. 中国计量学院硕士学位论文,浙江杭州, 2013.
Shi P T. Comparative Proteomic Analysis of Transgenic Cotton leaves at Different Developmental Stages. MS Thesis of China Jiliang University, Hangzhou, Zhejiang, China, 2013. (in Chinese with English abstract)
[38] Scheible W R È, González F A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E D, Stitt M. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta, 1997, 203: 304-319.
pmid: 9431679
[39] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999, 22: 583-621.
doi: 10.1046/j.1365-3040.1999.00386.x
[40] Palomo J, Gallardo F, Suárez M F, Cánovas F M. Purification and characterization of NADP+-linked isocitrate dehydrogenase from scots pine: evidence for different physiological roles of the enzyme in primary development. Plant Physiol, 1998, 118: 617-626.
pmid: 9765548
[41] Stitt M. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 1999, 2: 178-186.
doi: 10.1016/S1369-5266(99)80033-8 pmid: 10375569
[42] 陈喜文, 陈德富, 陈海浪. NAD-IDH亚基1基因在油菜花粉与种子发育过程中的表达规律. 作物学报, 2005, 31: 838-843.
Chen X W, Chen D F, Chen H L.The gene expression pattern of NAD-IDH subunit 1 during the development of pollen and seed in Brassica napus. Acta Agron Sin, 2005, 31: 838-843. (in Chinese with English abstract)
[43] Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J, 2011, 9: 826-837.
doi: 10.1111/pbi.2011.9.issue-8
[44] 卢永恩. 水稻谷氨酸合酶基因和胞质异柠檬酸脱氢酶基因的功能研究以及氨基酸转运蛋白基因家族分析. 华中农业大学博士学位论文,湖北武汉, 2014.
Lu Y E. Functional Analysis of Glutamic Synthase Gene and Cytosolic Isocitrate Dehydrogenase Gene and Genome-wide Analysis of Amino Acid Transporter Gene Family in Rice. PhD Dissertation of Huazhong Agricultural University dissertation, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[1] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[2] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[3] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[4] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[5] ZHAO Xiao-Xin, HUANG Shuo-Qi, TAN Wen-Bo, XING Wang, LIU Da-Li. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet [J]. Acta Agronomica Sinica, 2023, 49(12): 3302-3314.
[6] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[7] LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection [J]. Acta Agronomica Sinica, 2023, 49(1): 97-104.
[8] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[9] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[10] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[11] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[12] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[13] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[14] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[15] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .