Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 202-215.doi: 10.3724/SP.J.1006.2011.00202

• REVIEW • Previous Articles     Next Articles

Progress of Wheat Breeding in China and the Future Perspective

HE Zhong-Hu1,2,XIA Xian-Chun1,CHEN Xin-Min1,ZHUANG Qiao-Sheng1   

  1. 1 Institute of Crop Sciences / National Wheat Improvement Center / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2 CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2010-05-05 Revised:2010-12-14 Online:2011-02-12 Published:2010-12-15
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

Abstract: During the last ten years, Chinese wheat breeding has mainly made progresses in three aspects, i.e., (1) two sets of cultivars with high yielding potential, improved quality, and multi-resistance to various diseases were developed and extended, (2) three elite parents, viz. Zhou 8425B, Lumai 14, and 6VS/6AL translocation line played a leading role in cultivar development; and (3) a significant progress has been achieved in breeding methodology and applied research. Main constrains on wheat breeding were also summarized. The development and utilization of molecular markers such as SSR marker and functional maker, was reviewed from breeding point of view, and the priority areas for the next five to ten years were proposed. It summarized the progress of wheat quality study which is closely associated with cultivar development, including laboratory evaluation methods and selection criteria for pan bread, cookie, Chinese noodles and steamed bread. China’s strategies for wheat breeding were analyzed in four areas: (1) a draft points on improving Chinese wheat yield potential; (2) utilization of durable resistance for cultivar development; (3) more efforts on water use efficiency, tolerance to high temperature and traits associated with broad adaptation due to the serious impact of climate change; and (4) increased investment in breeding and seed marketing from private sector.

Key words: Breeding, Molecular marker, Yield potential, Processing quality, Disease resistance, Common wheat

[1]Zhuang Q-S (庄巧生). Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[2]Zhou Y, He Z H, Sui X X, Xia X C, Zhang X K, Zhang G S. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci, 2007, 47: 245-253
[3]Gupta P K, Langridge P, Mir R R. Marker-assisted wheat breeding: present status and future possibilities. Mol Breed, 2010, 26: 145-161
[4]Li Z-S(李振声). Review and perspective of wheat breeding in China. J Agric Sci Technol (中国农业科技导报), 2010, 20(2): 1-4 (in Chinese with English abstract)
[5]Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P, Xia X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2006, 112: 1098-1103
[6]Zhao X L, Zheng T C, Xia X C, He Z H, Liu D Q, Yang W X, Yin G H, and Li Z F. Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2008, 117: 1069-1075
[7]Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia 6VS·6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125-1128
[8]Li G P, Chen P D, Zhang S Z, Wang X, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. Effects of the 6VS·6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155: 305-313
[9]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539-546
[10]Cheng S-H(程顺和), Zhang B-Q(张伯桥), Gao D-R(高德荣). A discussion on strategies in wheat breeding. Acta Agron Sin(作物学报), 2005, 31(7): 932-939 (in Chinese with English abstract)
[11]He Z-H(何中虎), Yan Y-M(晏月明), Zhuang Q-S(庄巧生), Zhang Y(张艳), Xia X-C(夏先春), Zhang Y(张勇), Wang D-S(王德森), Xia L-Q(夏兰琴), Hu Y-K(胡英考), Cai M-H(蔡民华), Chen X-M(陈新民), Yan J(阎俊), Zhou Y(周阳). Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin (中国农业科学), 2006, 39(6): 1091-1101 (in Chinese with English abstract)
[12]Liu B-H(刘秉华), Zhai H-Q(翟虎渠), Yang L(杨丽), Wang S-H(王山荭), Liu H-W(刘宏伟), Zhou Y(周阳), Meng F-H(孟凡华), Yang J-P(杨建平), Zhu G(朱光), Cui S-L(崔淑兰), Zhang Q-H(张清海), Wei Y-L(位运粮). Dwarf male-sterile wheat and wheat breeding technology. Sci Agric Sin (中国农业科学), 2007, 40(suppl): 73-77 (in Chinese with English abstract)
[13]Zhang J-K(张建奎), Dong J(董静), Zong X-F(宗学凤), Yu G-D(余国东), Dai X-M(戴秀梅), Ruan R-W(阮仁武). Fertility alternation of thermo-photo-sensitive genic male sterile wheat line C412S and expression of fertility related APRT gene. Acta Agron Sin (作物学报), 2009, 35(4): 662-671 (in Chinese with English abstract)
[14]Wen W E, Li G Q, He Z H, Yang W Y, Xu M L, Xia X C. Development of an STS marker tightly linked to Yr26 against wheat stripe rust using the resistance gene-analog polymorphism (RGAP) technique. Mol Breed, 2008, 22: 507-515
[15]Xu Y B, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci, 2008, 48: 391-407
[16]Dubcovsky J. Marker assisted selection in public breeding programs: the wheat experience. Crop Sci, 2004, 44: 1895-1898
[17]Bonnett D G, Rebetzke G J, Spielmeyer W. Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed, 2005, 15: 75-85
[18]Kuchel H, Ye G Y, Fox R, Jefferies S. Genetic and economic analysis of targeted marker-assisted wheat breeding strategy. Mol Breed, 2005, 16: 67-78
[19]Sorrells M E. Application of new knowledge, technology, and strategies to wheat improvement. Euphytica, 2007, 157: 299-306
[20]Bagge M, Xia X C, Lübberstedt T. Functional markers in wheat. Curr Opin Plant Biol, 2007, 10: 211-216
[21]Pumphrey M O, Bernardo R, Anderson J A. Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci, 2007, 47: 200-206
[22]Jia G F, Chen P D, Qin G J, Bai G H, Wang X E, Wang S L, Zhou B, Zhang S Z, Liu D J. QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra‘s’. Euphytica, 2005, 146: 183-191
[23]Li C J, Zhu H L, Zhang C Q, Lin F, Xue S L, Cao Y, Zhang Z Z, Zhang L X, Ma Z Q. Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica, 2008, 163: 185-191
[24]Lin F, Xue S L, Zhang Z Z, Zhang C Q, Kong Z X, Yao G Q, Tian D G, Zhu H L, Li C J, Cao Y, Wei J B, Luo Q Y, Ma Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 ´ Wangshuuibai population: II. Type I resistance. Theor Appl Genet, 2006, 112: 528-535
[25]Zhang X, Zhou M P, Ren L J, Bai G H, Ma H X, Scholten O E, Guo P G, Lu W Z. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica, 2004, 139: 59-64
[26]Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specified PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed, 2006, 125: 201-205
[27]Chen, X M, Luo Y H, Xia X C, Xia L Q, Chen X, Ren Z L, He Z H, Jia J Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed, 2005, 124: 225-228
[28]Hao Y F, Liu A F, Wang Y H, Feng D S, Gao J R, Li X F, Liu S B, Wang H G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205-1212
[29]He R L, Chang Z J, Yang Z J, Yuan Z Y, Zhan H X, Zhang X J, Liu J X. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118, 1173-1180
[30]Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, Duan X Y, Sun Q X, Liu Z Y. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223-230
[31]Ji J H, Qin B, Wang H Y, Cao A Z, Wang S L, Chen P D, Zhuang L F, Du Y, Liu D J, Wang X E. STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica, 2008, 163: 159-165
[32]Ji X L, Xie C J, Ni Z F, Yang T, Nevo E, Fahima T, Liu Z Y, Sun Q X. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 2008, 159: 385-390
[33]Lan C X, Liang S S, Wang Z L, Yan J, Zhang Y, Xia X C, He Z H. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99: 1121-1126
[34]Li G Q, Fang T L, Zhang H T, Xie C J, Li H J, Yang T M, Nevo E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 531-539
[35]Liu Q, Ni Z F, Peng H R, Song W, Liu Z Y, Sun Q X. Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica, 2007, 155: 71-78
[36]Luo P G, Luo H Y, Chang Z J, Zhang H Y, Zhang M, Ren Z L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059-1064
[37]Qiu Y C, Zhou R H, Kong X Y, Zhang S S, Jia J Z. Micosatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet, 2005, 111: 1524-1531
[38]Song W, Xie C J, Du J K, Xie H, Liu Q, Ni Z F, Yang T M, Sun Q X, Liu Z Y. A ‘‘one-marker-for-two-genes’’ approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed, 2009, 23: 357-363
[39]Xu H X, Yao G Q, Xiong L, Yang L L, Jiang Y M, Fu B S, Zhao W F, Zhang Z Z, Zhang C Q, Ma Z Q. Identification and mapping of pm2026: a recessive powdery mildew resistance gene in einkorn (Triticum monococcum L.). Theor Appl Genet, 2008, 117: 471-477
[40]Xu W G, Li C X, Hu L, Zhang L, Zhang J Z, Dong H B, Wang G S. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed, 2010, 26: 31-38
[41]Yao G Q, Zhang J L, Yang L L, Xu H X, Jiang Y M, Xiong L, Zhang C Q, Zhang Z Z, Ma Z Q, Sorrells M E. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet, 2007, 114: 351-358
[42]Yi Y J, Liu H Y, Huang X Q, An L Z, Wang F, Wang X L. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed, 2008, 127: 116-120
[43]Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Xia X C, He Z H. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349-1359
[44]Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008, 159: 359-366
[45]Luo P G, Ren Z L, Zhang H Q, Zhang H Y. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology, 2005, 95: 1266-1270
[46]Zhang Y L, Wu Y P, Xiao Y G, He Z H, Zhang Y, Yan J, Zhang Y, Xia X C, Ma C X. QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica, 2009, 165: 435-444
[47]Zhang Y L, Wu Y P, Xiao Y G, Yan J, Zhang Y, Zhang Y, Ma C X, Xia X C, Ma C X, He Z H. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft ´ hard wheat cross. Crop & Pasture Sci, 2009, 60: 587-597
[48]Zhang K P, Cheng G F, Zhao L, Liu B, Xu X B, Tian J C. Molecular genetic analysis of flour color using a doubled haploid population in bread wheat (Triticum aestivum L.). Euphytica, 2009, 165: 471-478.
[49]Liu D-C(刘冬成), Gao M-Q(高睦抢), Guan R-X(关荣霞), Li R-Z(李润枝), Cao S-H(曹双河), Guo X-L(郭小丽), Zhang A-M(张爱民). Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using an F2:3 population. Acta Genet Sin (遗传学报), 2002, 29(8): 706-711 (in Chinese with English abstract)
[50]Zhang K-P(张坤普), Xu X-B(徐宪宾), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin(作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)
[51]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178
[52]Lin F, Xue S L, Tian D G, Li C J, Cao Y, Zhang Z Z, Zhang C Q, Ma Z Q. Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica, 2008, 164: 769-777
[53]Hai L, Guo H J, Xiao S H, Jiang G L, Zhang X Y, Yan C S, Xin Z Y, Jia J Z. Quantitative trait loci (QTL) of stem strength and related traits in a double-haploid population of wheat (Triticum aestivum L.). Euphytica, 2005, 141: 1-9
[54]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai ´ Yu 8679. Theor Appl Genet, 2009, 118: 313-325
[55]Yang W-X(杨文雄), Yang F-P(杨芳萍), Liang D(梁丹), He Z-H(何中虎), Shang X-W(尚勋武), Xia X-C(夏先春). Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin (作物学报), 2008, 34(7): 1109-1113 (in Chinese with English abstract)
[56]Wang L H, Li G Y, Peña R J, Xia X C, He Z H. Identification of novel allelic variants at Glu-A3 locus and development of STS markers in common wheat (Triticum aestivum L.). J Cereal Sci, 2010, 51: 305-312
[57]Wang L H, Zhao X L, He Z H, Ma W, Appels R, Peña R J, Xia X C. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118: 525-539
[58]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134: 51-60
[59]Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W. Y-type gene specific markers for enhanced discrimination of high molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006, 43: 94-101
[60]Ragupathy R, Naeem H A, Reimer E, Lukow O M, Sapirstein H D, Cloutier S. Evolutionary origin of the segmental duplication encompassing the wheat Glu-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular glutenin subunit. Theor Appl Genet, 2007, 116: 283-296
[61]D’Ovidio R, Anderson O D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet, 1994, 88: 759-763
[62]Ahmad M. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet, 2000, 101: 892-896
[63]Nakamura T, Vrinten P, Saito M, Konda M. Rapid classification of partial waxy wheat using PCR-based markers. Genome, 2002, 45: 1150-1156
[64]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218
[65]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Furerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58
[66]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of a phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221
[67]He X Y, He Z H, Ma W, Appels R, Xia X C. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed, 2009, 23: 553-563
[68]Giroux M J, Morris C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997, 95: 857-864
[69]Yang Y, Zhao X L, Xia L Q, Chen X M, Xia X C, Yu Z, He Z H, Röder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theor Appl Genet, 2007, 115: 971-980
[70]Chang C, Feng J M, Si H Q, Yin B, Zhang H P, Ma C X. Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wangxianbaimaizi. Mol Breed, 2010, 25: 517-523
[71]Chai J F, Zhou R H, Jia J Z, Liu X. Development and application of a new codominant PCR marker for detecting 1BL?1RS wheat-rye chromosome translocations. Plant Breed, 2006, 125: 302-304
[72]Francis H A, Leitch A R, Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636-642
[73]Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394
[74]Ellis M H, Spielmeyer W, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-Blb and Rht-Dlb dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042
[75]Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733
[76]Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploidy wheat. Theor Appl Genet, 2004, 109: 1677-1686
[77]Fu D, Szücs P, Yan L, Helguera M, Skinner J S, Von Z J, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54-65
[78]Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky. Vrn-D4 is a vernalization gene located on the centromeric region of Chromosome 5D in hexaploid wheat. Theor Appl Genet, 2010, 120: 543-552
[79]Prins R, Groenewald J Z, Marais G F, Snape J W, Koebner R M D. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet, 2001, 103: 618-624
[80]Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889-898
[81]Yan G P, Chen X M, Line R F, and Wellings CR. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 2003, 106: 636-643
[82]Mago R, Speilmeyer W, Lawrence G J, Lagudah E S, Ellis J G, Pryor A J. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat rye translocation lines. Theor Appl Genet, 2002, 104: 1317-1324
[83]Spielmeyer W, Sharp P J, Lagudah E S. Identification and validation of markers linked to broad spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci, 2003, 43: 333-336
[84]He Z H, Yang J, Zhang Y, Quail K, Peña R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257-267
[85]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370-378
[86]Zhang P P, He Z H, Zhang Y, Xia X C, Chen D S, Zhang Y. Association between percent SDS-Unextractable polymeric protein (%UPP) and end-use quality in Chinese bread wheat cultivars. Cereal Chem, 2008, 85: 696-700
[87]He Z H, Liu L, Xia X C, Liu J J, Peña R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345-350
[88]Ye Y L, Zhang Y, Yan J, Zhang Y, He Z H, Huang S D, Quail K J. Effects of flour extraction rate, added water and salt on color and texture of Chinese white noodles. Cereal Chem, 2009, 86: 477-485
[89]Zhang Y(张艳), Yan J(阎俊), Yoshida H, Wang D-S(王德森), Chen D-S(陈东升), Nagamine T, Liu J-J(刘建军), He Z-H(何中虎). Salted noodle and its sensory evaluation system. J Triticeae Crops (麦类作物学报), 2007, 27(1): 158-165 (in Chinese with English abstract)
[90]Lei J(雷激), Zhang Y(张艳), Wang D-S(王德森), Yan J(阎俊), He Z-H(何中虎). Methods for evaluation of quality characteristics of dry white Chinese noodles. Sci Agric Sin (中国农业科学), 2004, 37(12): 2000-2005 (in Chinese with English abstract)
[91]Liu J J, He Z H, Zhao Z D, Peña R J, Rajaram S. Wheat quality traits and quality parameters of cooked dry white Chinese noodle quality. Euphytica, 2003, 131: 147-154
[92]Liu J-J(刘建军), He Z-H(何中虎), Yang J(杨金), Xu Z-H(徐兆华), Liu A-F(刘爱峰), Zhao Z-D(赵振东). Variation of starch properties in wheat cultivars and their relationship with dry white Chinese noodle quality. Sci Agric Sin (中国农业科学), 2003, 36(1): 7-12 (in Chinese with English abstract)
[93]Zhang Y, Quail K, Mugford D, Huang S, He Z H. Variation of milling quality and its association with color of white salt noodle in Chinese winter wheat cultivars. Cereal Chem, 2005, 82: 633-638
[94]Zhang Y, Nagamine, He Z H, Ge X X, Yoshida H, Peña R J. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica, 2005, 141: 113-120
[95]Chen D-S(陈东升), Kiribuchi-Otobe C, Xu Z-H(徐兆华), Chen X-M(陈新民), Zhou Y(周阳), He Z-H(何中虎), Yoshida H, Zhang Y(张艳), Wang D-S(王德森). Effect of Wx-A1, Wx-B1 and Wx-D1 protein on starch properties and Chinese fresh noodle quality. Sci Agric Sin (中国农业科学), 2005, 38(5): 865-873 (in Chinese with English abstract)
[96]Chen F, He Z H, Chen D S, Zhang C L, Zhang Y, Xia X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. J Cereal Sci, 2007, 45: 59-66
[97]Chen D-S(陈东升), Zhang Y(张艳), He Z-H(何中虎), Wang D-S(王德森), Peña R J. Effect of water addition on northern style Chinese steamed bread processing quality. Acta Agron Sin (作物学报), 2005, 31(6): 730-735 (in Chinese with English abstract)
[98]Chen D-S(陈东升), Zhang Y(张艳), He Z-H(何中虎), Peña R J. Comparative study on evaluation methods for quality characteristics of northern style Chinese steamed bread. Sci Agric Sin (中国农业科学), 2010, 43(11): 2325-2333 (in Chinese with English abstract)
[99]He Z H, Liu A H, Peña R J, Rajaram S. Suitability of Chinese wheat varieties for production of northern style Chinese steamed bread. Euphytica, 2003, 131: 155-163
[100]Zhang P P, He Z H, Chen D S, Zhang Y, Larroque O R, Xia X C. Contribution of common wheat protein fractions to dough properties and quality of northern style Chinese steamed bread. J Cereal Sci, 2007, 46: 1-10
[101]Zhang Q-J(张岐军), Zhang Y(张艳), He Z-H(何中虎), Peña R J. Relationship between soft wheat quality traits and cookie quality parameters. Acta Agron Sin (作物学报), 2005, 31(9): 1125-1131 (in Chinese with English abstract)
[102]Yao J-B(姚金保), Edward S, Ma H-X(马鸿翔), Zhang P-P(张平平), Yao G-C(姚国才), Yang X-M(杨学明), Ren L-J(任丽娟), Zhang P(张鹏). Relationship between quality traits of soft red winter wheat and cookie diameter. Acta Agron Sin (作物学报), 2010, 36(4): 695-700 (in Chinese with English abstract)
[103]Liu L, He Z H, Yan J, Zhang Y, Peña R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B/1R translocation, and their effect on mixgraphic properties in Chinese bread wheats. Euphytica, 2005, 142: 197-204
[104]Liu L, Wang A L, Rudi A, Xia X C, He Z H, Bekes F, Yan Y M, Ma W J. A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding, J Cereal Sci, 2009, 50: 295-301
[105]Zhao X L, Ma W, Gale K R, Lei Z S, He Z H, Sun Q X, Xia X C. Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed, 2007, 20: 223-231
[106]Liu L, Ikeda M T, Branlard G, Peña R J, Rogers W J, Lerner S E, Kolman M A, Xia X C, Wang L H, Ma W J, Appels R, Yoshida H, Wang A L, Yan Y M, He Z H. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Biol, 2010, 10: 124
[107]He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Zhang Y(张艳), Zhang Y (张勇), Wang D-S(王德森), Xia L-Q(夏兰琴), Zhuang Q-S(庄巧生). Wheat quality improvement: history, progress, and prospects. Sci Agric Sin (中国农业科学), 2007, 40(suppl): 91-98 (in Chinese with English abstract)
[108]Dixon J, Braun H J, Kosina P, Crouch J. Wheat Facts and Future 2009. Mexico, D F: CIMMYT, 2009
[109]Rosegrant M W, Agcaoili M. Global food demand, supply, and price prospects to 2010. International Food Policy Research Institute, Washington, D.C., USA, 2010
[110]CIMMYT, 2009. A consortium to raise the yield potential of wheat. Discussion Paper, l. Workshop held at CIMMYT, El Batan, Mexico. 10-13 November 2009. Mexico, D F: CIMMYT
[111]Reynolds M, Foulkes M J, Slafer G A, Berry P, Parry M A J, Snape J W, Angus W J. Raising yield potential in wheat. J Exp Bot, 2009, 60: 1899-1918
[112]Fischer R A, Edmeades G. Breeding and cereal yield progress. Crop Sci, 2010, 50: S-85-S-98
[113]Phillips R L. Mobilizing science to break yield barriers. Crop Sci, 2010, 50: S-99-S-108
[114]Singh R P, Hodson D P, Jin Y, Huerta-Espino J, Kinyua M G, Wanyera R, Njau P, Ward R W. Current status, likely migration and strategies to mitigate the threat to wheat production from Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2006, N0054, 1-13
[115]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363
[116]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl1 Genet, 2008, 116: 1155-1166
[117]Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh R P. Yr46: A new adult plant stripe rust resistance gene associated with Lr67 in RL6077. Abstract in the 8th International Wheat Conference, St. Petersburg, Russia, June 1-4, 2010. p261
[118]Trethowan R M, Mujeeb-Kazi A. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci, 2008, 48: 1255-1265
[119]Jeffrey L F. Whatever happened to GMO wheat? Nat Biotechnol, 2009, 27: 974-976
[120]Yu X-D(喻修道), Xu Z-S (徐兆师), Chen M(陈明), Li L-C(李连城), Ma Y-Z (马有志). The progress and application of wheat transformation technology. Sci Agric Sin (中国农业科学), 2010, 43(8): 1539-1553 (in Chinese with English abstract)
[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[4] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[5] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[6] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[7] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[8] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[9] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[10] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[11] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[12] DU Xiang-Bei, XI Min, KONG Ling-Cong, WU Wen-Ge, CHEN Jin-Hua, XU You-Zun, ZHOU Yong-Jin. Yield gaps of rice-wheat double cropping and its relationship with resource utilization in Yangtze-Huaihe Rivers region [J]. Acta Agronomica Sinica, 2021, 47(2): 351-358.
[13] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[14] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!