Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 974-982.doi: 10.3724/SP.J.1006.2021.01066

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants

HE Jun-Yu(), YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei*()   

  1. Collage of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2020-08-16 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-15
  • Contact: CHEN Sheng-Wei E-mail:etfiee_coisini@126.com;ynkmcsw@126.com
  • Supported by:
    National Natural Science Foundation of China(31660434);National Natural Science Foundation of China(32060457)


Dwarf mutant is an important gene resource in wheat breeding and plant height genetic research. In this paper, EMS (ethyl methyl sulfonate) was used to mutate the mature seeds of ‘Yunmai 53’, and 33 candidate dwarf mutants of M3 generation were finally obtained by self-bred. Twenty-six dwarf mutants were selected by analyzing differences between the mutant parent in two years and that of M2 and M3 generation candidate plants, and the variation range of their plant height was from (13.61 ± 0.11) cm to (44.08 ± 1.73) cm. Twenty-six dwarf mutants with at least 2 mutant sites were verified based on 12 specific markers of 8 dwarf genes. In addition to plant height, 26 dwarf mutants also carried four mutational traits, spike length, spikelet density, internode number, and average internode length. The 26 dwarf mutants could be clustered into 5 subgroups. Among them, the first subgroup was the least in spikelets and florets, the second subgroup was the shortest in plant height, spike length and average internode length, and the highest spikelet density, while the third subgroup was the least in internode number. Plant height was significantly correlated with average internode length and internode number with partial correlation coefficients of 0.94 and 0.58, respectively, but not correlated with spike length, spikelet number and spikelet density. The plant height was genetically associated with internode length and internode number in 26 dwarf mutants. The mutants carried different combinations of the mutant gene, and can be useful in wheat dwarf breeding and the studies on genetic mechanism of the traits, such as plant height, spike length and spikelet density.

Key words: wheat, mutant, dwarf genes, molecular marker, genetic association

Table 1

Specific molecular markers of dwarf genes and the fragment length and primers sequence of the markers"

Forward sequence
Reverse sequence
Product size

Fig. 1

Differences of plant height between ‘Yunmai 53’ and other dwarf mutants A: mutant 31; B: mutant 17; C: mutant 10; D: mutant 16; E: mutant 23; F: mutant 25."

Table 2

Mean values of 7 agronomic traits of ‘Yunmai 53’ and candidate mutants, and the difference between the mean values (t-test)"

Plant height
Spike length (cm)
Spikelets number
per spike
Number of
Average internode length (cm)
Number of
云麦53 Yunmai 53 74.89±4.03 10.30±0.31 19.25±1.21 1.88±0.18 59.35±5.23 11.10±1.04 6.00±0.00
mutant 1 56.95±6.95 10.49±1.52 20.50±3.50 2.05±0.63 60.34±9.34 7.50±3.33 5.00±0.00
mutant 2 39.52±2.02* 8.40±1.10 17.30±3.30 2.15±0.68 58.20±16.20 7.98±0.78 4.50±0.50
mutant 3 63.99±2.51 6.11±0.59* 17.10±1.10 2.84±0.46 51.70±3.70 11.23±0.96 5.40±0.60
mutant 4 37.24±0.44* 4.44±0.34** 19.30±1.30 4.35±0.04** 55.00±1.00 7.21±0.61 4.50±0.50
mutant 5 21.94±3.66* 3.72±0.02** 20.00±1.00 5.37±0.24** 58.30±1.30 4.88±0.62* 3.80±0.20**
mutant 6 39.85±4.39* 6.01±0.45* 19.10±2.10 3.73±1.27 55.50±4.50 6.87±0.44 4.50±0.50
mutant 7 33.89±2.89* 4.71±0.41** 21.00±2.00 4.46±0.04** 63.40±6.40 7.22±0.39 4.00±0.00
mutant 8 34.92±2.58* 4.40±0.10** 22.50±0.50 5.12±0.01** 67.50±1.50 7.16±0.44 4.40±0.60
mutant 9 31.81±6.79* 4.18±0.58* 21.30±2.30 5.12±0.16** 61.20±4.20 6.20±0.95 4.40±0.60
mutant 10 25.55±7.85* 4.24±0.35** 19.40±1.40 4.62±0.71 54.70±0.70 5.44±1.77 3.90±0.10**
mutant 11 29.78±1.92* 8.20±0.70 16.10±0.90 1.97±0.06 48.00±3.00 5.49±0.24* 4.50±0.50
mutant 12 38.79±2.61* 4.63±0.13** 19.30±2.30 4.16±0.38* 54.40±3.40 7.30±0.08 5.00±0.00
mutant 13 38.32±8.48 3.98±0.38** 15.90±1.90 3.98±0.10** 44.90±2.90 6.65±0.85 4.50±0.50
mutant 14 33.18±6.02* 4.36±0.24** 18.80±0.80 4.34±0.43* 53.00±1.00 5.95±0.03* 3.90±0.01**
mutant 15 30.94±2.26* 4.00±0.50** 17.90±0.10 4.55±0.59* 49.50±4.50 5.68±0.24* 4.80±0.20*
mutant 16 13.61±0.11** 3.39±0.11** 18.40±1.40 5.45±0.59* 45.70±5.30 2.26±0.63* 4.80±1.20
mutant 17 32.62±4.98* 3.96±0.26** 17.50±0.50 4.43±0.16** 49.10±1.90 6.16±0.62 4.50±0.50
mutant 18 44.08±1.73* 7.08±0.48* 13.50±2.50 1.90±0.23 33.25±0.25* 7.87±0.97 5.50±0.50
mutant 19 42.41±12.19 10.58±1.52 21.40±2.40 2.10±0.53 69.10±12.10 6.10±1.01 5.30±0.70
mutant 20 42.18±6.58 7.97±0.63 15.30±0.30 1.94±0.20 43.10±1.90 7.31±1.89 4.80±0.20*
mutant 21 31.26±4.44* 4.02±0.48** 15.60±1.60 3.99±0.88 40.40±1.60 7.04±0.79 3.80±0.20**
mutant 22 52.28±5.48 8.45±0.95 19.50±0.50 2.34±0.33 56.30±0.70 8.44±0.94 5.50±0.50
Plant height
Spike length (cm)
Spikelets number
per spike
Number of
Average internode length (cm)
Number of
mutant 23 15.80±0.60** 3.70±0.35** 19.80±1.80 5.28±0.01* 58.80±4.80 2.29±0.41* 4.40±0.60
mutant 24 30.07±4.43* 6.76±1.04 16.90±2.90 2.63±0.84 49.70±7.70 5.26±0.05* 5.00±0.00
mutant 25 18.16±4.44* 3.77±0.17** 20.20±0.20 5.37±0.19** 58.80±1.20 3.93±0.93* 4.50±0.50
mutant 26 19.75±1.35** 4.60±1.00* 18.60±1.60 4.17±0.56 53.20±2.20 4.16±0.46* 3.80±0.20**
mutant 27 34.54±4.74* 7.49±0.89 14.80±3.80 1.95±0.28 50.00±17.00 7.13±1.40 4.50±0.50
mutant 28 33.76±10.16 8.86±0.16 15.90±1.90 1.79±0.18 53.90±11.90 6.59±3.49 5.00±0.00
mutant 29 35.01±4.79* 8.20±0.40 16.40±0.40 2.01±0.15 49.30±1.30 6.18±0.02* 5.00±0.00
mutant 30 30.09±6.01* 8.57±1.13 16.10±1.10 1.93±0.38 48.60±3.60 5.92±0.00* 4.30±0.70
mutant 31 33.96±0.36* 8.70±1.00 17.20±0.20 2.01±0.26 49.20±1.80 5.60±0.94 4.50±0.50
mutant 32 31.50±0.70** 8.02±0.28* 16.50±1.50 2.07±0.26 46.30±1.30 5.11±0.53* 4.50±0.50
mutant 33 24.02±3.38* 10.04±1.94 16.63±1.63 1.69±0.17 47.75±2.75 3.95±0.12* 5.00±1.00

Fig. 2

Spike characteristic of some dwarf mutants and their parents (a): ‘Yunmai 53’; (b), (c), (d), and (e): candidate dwarf mutants."

Table 3

Dwarf genes detected in the genome of ‘Yunmai 53’ and candidate mutants"

Genes detected by 13 markers
云麦53 Yunmai 53 Rht-B1a, Rht-D1b, Rht4, Rht8, Rht9, Rht12, Rht14, Rht16, Rht18
mutant 1 Rht-B1a, Rht-D1a, Rht4, Rht5, Rht8#, Rht9#, Rht13, Rht14, Rht16, Rht18
mutant 2 Rht-B1a, Rht-D1b, Rht4, Rht5, Rht8#, Rht9#, Rht13, Rht14, Rht16, Rht18
mutant 3 Rht-B1a, Rht-D1b, Rht4, Rht8#, Rht9#, Rht12, Rht14, Rht16, Rht18
mutant 10 Rht-B1a, Rht-D1a, Rht4, Rht8, Rht9#
mutant 11 Rht-B1a, Rht-D1a, Rht5, Rht12
mutant 19 Rht-B1a, Rht-D1a, Rht4, Rht5, Rht8, Rht9#, Rht14, Rht16, Rht18
mutant 26 Rht-B1a, Rht-D1b, Rht4, Rht8, Rht9, Rht13
mutant 27 & mutant 28 Rht-B1a, Rht-D1b, Rht4, Rht8#, Rht9#, Rht13
Other mutants Rht-B1a, Rht-D1a, Rht4, Rht5, Rht8, Rht9#

Fig. 3

Specific markers amplified from the genomes of ‘Yunmai 53’ and candidate mutants CK: control; M: marker; 53: Yunmai 53; 1-33: mutant 1-mutant 33; A-B were WMC503 and BARC151 markers amplified in ‘Yunmai 53’ and candidate mutants, respectively. The red arrows indicate differential fragments."

Fig. 4

Cluster result of 26 mutants and their parent based on seven agronomic traits"

Fig. 5

Mean values and differences of agronomic traits in different groups materials I: group ‘Yunmai 53’; II-VI: the subclass 1-subclass 5 of mutants. Different lowercase letters and capital letters represent significant differences at the 0.05 and 0.01 probability levels, respectively."

Table S1

ANOVA result of ‘Yunmai 53’ and 5 subclasses dwarf mutants"

株高Plant height (cm) 组间Between groups 11,981.952 5 2396.390 37.615**
组内Within group 4077.292 64 63.708
穗长Spike length (cm) 组间Between groups 119.531 5 23.906 4.603**
组内Within group 332.417 64 5.194
小穗数Spikelets number per spike 组间Between groups 234.415 5 46.883 10.229**
组内Within group 293.328 64 4.583
小穗密度Spikelet density 组间Between groups 48.716 5 9.743 6.920**
组内Within group 90.110 64 1.408
小花数Number of florets 组间Between groups 3126.921 5 625.384 11.289**
组内Within group 3545.316 64 55.396
平均节间长Average internode length (cm) 组间Between groups 190.020 5 38.004 13.307**
组内Within group 182.776 64 2.865
节间数Number of Internode 组间Between groups 14.628 5 2.926 7.604**
组内Within group 24.623 64 0.385

Table 4

Binary correlation, partial correlation coefficients and significances among the different mutant traits"

Plant height (cm)
Spike length (cm)
Spikelets number per spike
Number of florets
Average internode length (cm)
Number of internode
株高 Plant height (cm) 0.51** -0.09 -0.47* 0.06 0.92** 0.59**
穗长 Spike length (cm) 0.26 -0.54* -0.95** -0.25 0.36 0.53**
小穗数 Spikelets number per spike 0.26 0.41 0.74** 0.89** -0.07 -0.27
小穗密度 Spikelet density -0.11 -0.95** 0.64** 0.47* -0.38 -0.48**
小花数 Number of florets -0.32 0.13 0.78** -0.09 0.10 -0.23
平均节间长 Average internode length (cm) 0.94** -0.43* -0.16 -0.29 0.35 0.35
节间数 Number of internode 0.58** 0.16 -0.10 0.16 -0.08 -0.44*
[1] 孙树贵, 李艳丽, 鲁敏, 张军, 王秀娟, 武军, 赵继新, 杨群慧, 刘淑会, 陈新宏. 67份美国小麦品种矮秆基因的分子标记检测. 麦类作物学报, 2013,33:1087-1092.
Sun S G, Li Y L, Lu M, Zhang J, Wang X J, Wu J, Zhao J X, Yang Q H, Liu S H, Chen X H. Distribution of dwarfing genes in 67 American wheat cultivars detected by molecular markers. J Triticeae Crops, 2013,33:1087-1092 (in Chinese with English abstract).
[2] 张德强, 宋晓朋, 冯洁, 马文洁, 武炳瑾, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种矮秆基因Rht-Blb、Rht-DlbRht8的检测及其对农艺性状的影响. 麦类作物学报, 2016,36:975-981.
Zhang D Q, Song X P, Feng J, Ma W J, Wu B J, Zhang C L, Cui Z X, Feng Y, Sun D J. Detection of dwarf genes Rht-B1b, Rht-D1b and Rht8 in Huang-Huai Valley winter wheat areas. J Triticeae Crops, 2016,36:975-981 (in Chinese with English abstract).
[3] 昝凯, 李春游, 敬樊, 陈真真, 王亮明, 王秀娟, 杨群慧, 王中华, 陈新宏. 部分印度小麦品种矮秆基因的检测及其对部分性状的影响. 麦类作物学报, 2015,35:910-917.
Zan K, Li C Y, Jing F, Chen Z Z, Wang L M, Wang X J, Yang Q H, Wang Z H, Chen X H. Detection of dwarfing genes in some India wheat cultivars and their influences on partial agronomic characteristics. J Triticeae Crops, 2015,35:910-917 (in Chinese with English abstract).
[4] 周强, 袁中伟, 欧俊梅, 任勇, 杜小英, 陶军, 李生荣, 刘登才. 四川小麦主要矮秆基因的分子鉴定. 麦类作物学报, 2015,35:1624-1630.
Zhou Q, Yuan Z W, Ou J M, Ren Y, Du X Y, Tao J, Li S R, Liu D C. Molecular identification of the main dwarfing genes in wheat varieties in Sichuan. J Triticeae Crops, 2015,35:1624-1630 (in Chinese with English abstract).
[5] 朱浩, 牛艳路, 王佩, 全军利, 陈耀锋. 小麦矮秆基因的分子检测及遗传效应研究. 分子植物育种, 2018,16:1855-1861.
Zhu H, Niu Y L, Wang P, Quan J L, Chen Y F. Molecular detection and genetic effect research of dwarf gene in wheat. Mol Plant Breed, 2018,16:1855-1861 (in Chinese with English abstract).
[6] 周强, 袁中伟, 张连全, 甯顺腙, 任勇, 陶军, 李生荣, 刘登才. 四倍体小麦地方品种矮蓝麦矮秆性状的遗传分析. 作物学报, 2015,41:1899-1905.
Zhou Q, Yuan Z W, Zhang L Q, Ning S Z, Ren Y, Tao J, Li S R, Liu D C. Genetic Analysis on dwarfing trait in landrace Ailanmai of Triticum turgidum L. ssp. turgidum. Acta Agron Sin, 2015,41:1899-1905 (in Chinese with English abstract).
[7] 钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述. 分子植物育种, 2018,16:6670-6677.
Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of Rht dwarf genes in wheat. Mol Plant Breed, 2018,16:6670-6677 (in Chinese with English abstract).
[8] Emma M J, Rachel E J, Alanna J O, John M M, Michael J G. The impact of the wheat Rht-B1b semi-dwarfing allele on photosynthesis and seed development under field conditions. Front Plant Sci, 2019,10:10-51.
[9] 陈亮. 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 西北农林科技大学博士学位论文, 陕西杨凌, 2014. pp 10-19.
Chen L. Genetic Effects of Dwarfing Gene Rht12 on the Important Agronomic Traits of Common Bread Wheat and Screening of New Dwarf Mutants. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2014. pp 10-19 (in Chinese with English abstract).
[10] 唐娜, 逯芳芳, 何蓓如, 胡银岗. 矮秆基因对小麦部分农艺性状的效应. 西北植物学报, 2010,30:41-49.
Tang N, Lu F F, He B R, Hu Y G. Effects of dwarfing genes on some agronomic characteristics of wheat. Acta Bot Boreal- Occident Sin, 2010,30:41-49 (in Chinese with English abstract).
[11] 刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析. 核农学报, 2019,33:1451-1458.
Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X. RNA-Seq analysis of wheat dwarf mutant DC20. J Nucl Agric Sci, 2019,33:1451-1458 (in Chinese with English abstract).
[12] 陆燕, 赵天祥, 刘国祥, 贾继增, 孔秀英. 小麦矮秆圆粒突变体的鉴定与分析. 植物遗传资源学报, 2014,15:160-164.
Lu Y, Zhao T X, Liu G X, Jia J Z, Kong X Y. Identification and analysis of the dwarf-spherical grain mutant W98. J Plant Genet Resour, 2014,15:160-164 (in Chinese with English abstract).
[13] 李杏普, 兰素缺, 张业伦, 张京惠, 冯延茹, 刘书娥, Gale M D, Worland T J. Rht8、Rht10、Rht12矮秆基因对小麦营养生长和生殖生长发育的影响. 华北农学报, 2009,24(增刊1):50-53.
Li X P, Lan S Q, Zhang Y L, Zhang J H, Feng Y R, Liu S E, Gale M D, Worland T J. Effects of Rht8, Rht10 and Rht12 semi-dwarfing and dwarfing genes on wheat vegetative and reproductive development. Acta Agric Boreali-Sin, 2009,24(S1):50-53 (in Chinese with English abstract).
[14] 王清海, 杨在君, 魏淑红, 廖明莉, 苏瑾, 杨宇凤, 杨会, 王育伟, 彭正松. 四倍体小麦矮秆基因的赤霉素敏感性及对农艺性状的影响. 华北农学报, 2015,30(2):132-139.
Wang Q H, Yang Z J, Wei S H, Liao M L, Su J, Yang Y F, Yang H, Wang Y W, Peng Z S. Gibberellin sensitivity of the Rht genes in tetraploid wheat and effects on agronomic traits. Acta Agric Boreali-Sin, 2015,30(2):132-139 (in Chinese with English abstract).
[15] Baloch G A, Cui L, Hu Y G. The effects of dwarfing gene Rht-8 on plant height and other agronomic traits in common wheat. Agric Res Arid Areas, 2014,32:245-252.
[16] Sun L H, Yang W L, Li Y F, Shan Q Q, Ye X B, Wang D Z, Yu K, Lu W W, Xin P Y, Pei Z, Guo X L, Liu D C, Sun J Z, Zhan K H, Chu J F, Zhang A M. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019,97:887-900.
[17] 卢媛, 崔超凡, 胡平, 陈佩度, 沈雪芳, 韩晴, 王义发, 邢莉萍, 曹爱忠. 矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响. 作物学报, 2017,43:1272-1279.
Lu Y, Cui C F, Hu P, Chen P D, Shen X F, Han Q, Wang Y F, Xing L P, Cao A Z. Effects of dwarf gene Rht_NM9 on contents of endogenous hormone regulating plant height of common wheat. Acta Agron Sin, 2017,43:1272-1279 (in Chinese with English abstract).
[18] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430.
[19] Ellis M H, Spielmeyer W, Rebetzke G J, Richards R A. Perfect markers for the and dwarfing genes in wheat. Theor Appl Genet, 2002,105:1038-1042.
[20] Watanabe N. Genetic collection and development of near-isogenic lines in durum wheat. Czech J Genet Plant, 2008,12:636-643.
[21] Korzun V, Roeder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene in wheat: Part I. molecular mapping of on the short arm of chromosome 2D of bread wheat. Theor Appl Genet, 1998,96:1104-1109.
[22] 贾影影. 小麦矮秆基因Rht13Rht-D1b互作研究及Rht13分子标记开发. 宁夏大学硕士学位论文, 宁夏银川, 2016. pp 22-26.
Jia Y Y. Study on Interaction of Dwarfing Gene Rht13 with Rht-D1b and Development Molecular Markers for Rht13 in Wheat. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2016. pp 22-26 (in Chinese with English abstract).
[23] 吴同彦, 谢令琴, 杨学举, 张彩英, 陈荣芬. 小麦株高构成因素与产量及其他性状相关性的研究. 河北农业大学学报, 2002,25(3):10-12.
Wu T Y, Xie L Q, Yang X J, Zhang C Y, Chen R F. Study on the correlations between the components of the plant height and the yield and other traits of wheat. J Agric Univ Hebei, 2002,25(3):10-12(in Chinese with English abstract).
[24] 闵东红, 王辉, 孟超敏, 翟耀锋, 李学军, 曹宁, 于新智. 不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究. 麦类作物学报, 2001,21(4):76-79.
Min D H, Wang H, Meng C M, Zhai Y F, Li X J, Cao N, Yu X Z. Studies on the lodging resistance with its subtraits of different height wheat varieties and correlation between plant height and yield. J Triticeae Crops, 2001,21(4):76-79 (in Chinese with English abstract).
[25] 赵万春, 王红. 小麦株高及其构成因素的遗传和相关性研究. 麦类作物学报, 2003,23(4):28-31.
Zhao W C, Wang H. Genetic and correlation study on plant height and its components in wheat. J Triticeae Crops, 2003,23(4):28-31 (in Chinese with English abstract).
[26] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35:270-278.
Zhang K P, Xu X B, Tian J C. QTL Mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract).
[27] 张晶, 张定一, 王姣爱, 党建友. 小麦单株有效分蘖数与农艺性状的相关性研究. 山西农业科学, 2009,37(6):17-19.
Zhang J, Zhang D Y, Wang J A, Dang J Y. The dependence study of the effective tillers per plant and agronomic characters in wheat. J Shanxi Agric Sci, 2009,37(6):17-19 (in Chinese with English abstract).
[28] 卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011,12:86-91.
Lu X, Zhang J P, Wang H J, Yang X M, Li X Q, Li L H. Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyron cristatum offspring. J Plant Genet Resour, 2011,12:86-91 (in Chinese with English abstract).
[29] 张祥池, 郝燕冉, 魏凡, 张志锋, 魏佳佳, 付帅, 安浩军, 王睿辉. 小麦矮秆突变体矮秆基因的遗传分析. 河北农业大学学报, 2017,40(2):5-10.
Zhang X C, Hao Y R, Wei F, Zhang Z F, Wei J J, Fu S, An H J, Wang R H. Characterization of the Rht gene in one dwarfing mutant of wheat ( Triticum aestivum L.). J Agric Univ Hebei, 2017,40(2):5-10 (in Chinese with English abstract).
[30] 冯洁, 许小宛, 李小东, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种和CIMMYT材料的矮秆基因型及其对株高和胚芽鞘的影响. 麦类作物学报, 2018,38:668-673.
Feng J, Xu X W, Li X D, Zhang C L, Cui Z X, Feng Y, Sun D J. Dwarf genotype of wheat from Huang-Huai river wheat area and CIMMYT and their effects on plant height and coleoptile length. J Triticeae Crops, 2018,38:668-673 (in Chinese with English abstract).
[31] 吴儒刚, 裴艳婷, 张超, 范业泉, 靳义荣, 刘鹏, 贾德新, 戴忠民. 基于盐胁迫的小麦农艺性状多样性分析及评价. 麦类作物学报, 2019,39:1029-1037.
Wu R G, Pei Y T, Zhang C, Fan Y Q, Jin Y R, Liu P, Jia D X, Dai Z M. Analysis and evaluation of agronomic character diversity of wheat based on salt stress. J Triticeae Crops, 2019,39:1029-1037 (in Chinese with English abstract).
[32] 林旭群, 李韵芳, 鲁璐, 张春艳, 廖金花, 李莉蓉, 吴瑜. 小麦矮秆基因Rht-B1b、Rht-D1b、Rht8的检测及其对株高的影响. 应用与环境生物学报, 2014,20:80-86.
Lin X Q, Li Y F, Lu L, Zhang C Y, Liao J H, Li L R, Wu Y. Identification of wheat dwarfing genes Rht-B1b, Rht-D1b, Rht8 and their effects on plant height. Chin J Appl Environ Biol, 2014,20:80-86 (in Chinese with English abstract).
[33] 王鑫, 马莹雪, 杨阳, 王丹峰, 殷慧娟, 王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析. 作物学报, 2016,42:1134-1142.
Wang X, Ma Y X, Yang Y, Wang D F, Yin H J, Wang H G. Identification of dwarfing wheat germplasm SN224 and analysis of QTLs for its agronomic characters. Acta Agron Sin, 2016,42:1134-1142 (in Chinese with English abstract).
[34] 杨秋平, 杨阳, 王鑫, 马莹雪, 张明, 王洪刚. 小麦矮秆种质山农11069-5矮秆基因的遗传分析及分子定位. 分子植物育种, 2015,13:71-76.
Yang Q P, Yang Y, Wang X, Ma Y X, Zhang M, Wang H G. Genetic analysis and molecular mapping of the gene in dwarf germplasm Shannong 11069-5. Mol Plant Breed, 2015,13:71-76 (in Chinese with English abstract).
[35] 张明, 吴瑕, 张一铎, 张超, 牛祖彪, 崔淑佳, 杨秋平, 王洪刚. 小麦矮秆种质系山农342-9矮秆基因的分子标记定位. 山东农业科学, 2014,46(7):7-10.
Zhang M, Wu X, Zhang Y D, Zhang C, Niu Z B, Cui S J, Yang Q P, Wang H G. Molecular mapping of Rht Gene in wheat dwarfing germplasm line Shannong 342-9. Shandong Agric Sci, 2014,46(7):7-10 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[5] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[6] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[7] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[8] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[9] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[10] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[13] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[14] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[15] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
Full text



No Suggested Reading articles found!