Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 983-990.doi: 10.3724/SP.J.1006.2021.04207
• RESEARCH NOTES • Previous Articles
TANG Xin(), LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao*()
[1] |
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489 |
[2] | Rondanini D P, Gomez N V, Agosti M B, Miralles D J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. Eur J Agron, 2012,37:56-65. |
[3] |
Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci, 2007,12:427-432.
doi: 10.1016/j.tplants.2007.08.005 pmid: 17720610 |
[4] | Chen L, Liu Y G. Male sterility and fertility restoration in crops. Ann Rev Plant Biol, 2014,65:579-606. |
[5] | Virmani S S, Ilyas-Ahmed M. Environment-sensitive genic male sterility (EGMS) in crops. Adv Agron, 2001,72:139-195. |
[6] |
Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene ( BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007,115:643-651.
doi: 10.1007/s00122-007-0594-1 pmid: 17605126 |
[7] | Sun Y, Zhang D, Wang Z, Guo Y, Sun X, Li W, Zhi W, Hu S. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. BMC Plant Biol, 2020,20:8. |
[8] | 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究. 中国农业科学, 1985,18(2):44-48. |
Shi M S. The discovery and study of the photosensitive recessive male-sterile rice ( Oryza sativa L. subsp. japonica). Sci Agric Sin, 1985,18(2):44-48 (in Chinese with abstract). | |
[9] | Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice ( Oryza sativa L.). Theo Appl Genet, 2005,111:1271-1277. |
[10] |
Tang J H, Fu Z Y, Hu Y M, Li J S, Sun L L, Ji H Q. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet, 2006,113:11-15.
doi: 10.1007/s00122-006-0262-x pmid: 16783588 |
[11] |
Xing Q H, Ru Z G, Zhou C J, Xue X, Liang C Y, Yang D E, Jin D M, Wang B. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene ( wtms1) in wheat. Theor Appl Genet, 2003,107:1500-1504.
doi: 10.1007/s00122-003-1385-y pmid: 12928780 |
[12] |
Frasch R M, Weigand C, Perez P T, Palmer R G, Sandhu D. Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J Hered, 2011,102:11-16.
doi: 10.1093/jhered/esq100 pmid: 20864624 |
[13] |
Zhu J, Lou Y, Shi Q S, Zhang S, Zhou W T, Yang J, Zhang C, Yao X Z, Xu T, Liu J L, Zhou L, Hou J Q, Wang J Q, Wang S, Huang X H, Yang Z N. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat Plants, 2020,6:360-367.
pmid: 32231254 |
[14] | 李可琪, 曾新华, 袁荣, 闫晓红, 吴刚. 甘蓝型油菜温敏细胞核雄性不育系TE5A花药发育的细胞学研究. 中国农业科学, 2016,49:2408-2417. |
Li K Q, Zeng X H, Yuan R, Yan X H, Wu G. Cytological researches on the anther development of a thermo-sensitive genic male sterile line TE5A in Brassica napus. Sci Agric Sin, 2016,49:2408-2417 (in Chinese with English abstract). | |
[15] |
Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant meiotic prophase I leads to genic male sterility in the novel TE5A mutant of Brassica napus. Sci Rep, 2016,6:33955.
pmid: 27670217 |
[16] | Yu C Y, Guo Y F, Ge J, Hu Y M, Dong J G, Dong Z S. Characterization of a new temperature-sensitive male sterile line SP2S in rapeseed ( Brassica napus L.). Euphytica, 2015,206:473-485. |
[17] | 张涛, 沈余亮, 王瑞雪, 邹燕, 赵敬会, 李荣冲, 梁晶龙, 龚慧明. 甘蓝型油菜雄性不育系160S育性转换与利用. 西北植物学报, 2012,32:35-41. |
Zhang T, Shen L Y, Wang R X, Zou Y, Zhao J H, Li R C, Liang J L, Gong H M. Fertility alteration and utilization of male-sterile line 160S in Brassica napus. Acta Bot Boreali-Occident Sin, 2012,32:35-41 (in Chinese with English abstract). | |
[18] | Laser K D, Lersten N K. Anatomy and cytology of microsporo-genesis in cytoplasmic male sterile (CMS) angiosperms. Bot Rev, 1972,38:425-454. |
[19] |
Wang S P, Zhang G S, Song Q L, Zhang Y X, Li Z, Guo J L, Niu N, Ma S C, Wang J W. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One, 2015,10:e0119557.
doi: 10.1371/journal.pone.0119557 pmid: 25803723 |
[20] | 余凤群, 傅廷栋. 甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究. 武汉植物学研究, 1990,8:209-216. |
Yu F Q, Fu T D. Cytomorphology study on anther development of several male sterile lines of Brassica napus. J Wuhan Bot Res, 1990,8:209-216 (in Chinese with English abstract). | |
[21] | 葛娟, 郭英芬, 于澄宇, 张国云, 董军刚, 董振生. 甘蓝型油菜光、温敏雄性不育系Huiyou 50S花粉败育的细胞学观察. 作物学报, 2012,38:541-548. |
Ge J, Guo Y F, Yu C Y, Zhang G Y, Dong J G, Dong Z S. Cytological observation of anther development of photoperiod/thermo-sensitive male sterile line Huiyou 50S in Brassica napus. Acta Agron Sin, 2012,38:541-548 (in Chinese with English abstract). | |
[22] |
Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol, 2005,56:393-434.
pmid: 15862102 |
[23] |
Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I W, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005,17:2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453 |
[24] |
Zhao D Z, Wang G F, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002,16:2021-2031.
pmid: 12154130 |
[25] | Bedinger P. The remarkable biology of pollen. Plant Cell, 1992,4:879-887. |
[26] |
Xu J, Ding Z W, Vizcay-Barrena G, Shi J X, Liang W Q, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson Z A, Zhang D B. Aborted microspores acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell, 2014,26:1544-1556.
doi: 10.1105/tpc.114.122986 pmid: 24781116 |
[27] | Liu Z H, Shi X Y, Li S, Hu G, Zhang L L, Song X Y. Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int J Mol Sci, 2018,19:1708. |
[28] | Papini A, Mosti S, Brighigna L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma, 1999,207:213-221. |
[29] | Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The ricetapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006,18:2999-3014. |
[30] | Zhang D, Liu D, Lyu X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell, 2014,26:2939-2961. |
[31] |
Jacobowitz J R, Doyle W C, Weng J K. PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. Plant Cell, 2019,31:848-861.
doi: 10.1105/tpc.18.00907 pmid: 30886127 |
[32] |
Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu Y G, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. J Exp Bot, 2020,71:2551-2560.
doi: 10.1093/jxb/eraa045 pmid: 31989154 |
[33] |
Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020,182:962-976.
pmid: 31772077 |
[34] | 许代香, 贾乐东, 王瑞, 马国强, 段谋正, 曲存民, 李加纳. 甘蓝型油菜显性核不育系D3A的细胞学研究. 西南大学学报(自然科学版), 2020,42(1):16-21. |
Xu D X, Jia L D, Wang R, Ma G Q, Duan M Z, Qu C M, Li J N. Cytological studies of dominant GMS sterile line D3A in Brassica napus L. J Southwest Univ (Nat Sci Edn), 2020,42(1):16-21 (in Chinese with English abstract). | |
[35] | 李六林. 植物雄性不育机理研究. 北京: 中国农业科学技术出版社, 2008. p 5. |
Li L L. Study on the Mechanism of Plant Male Sterility. Beijing: China Agricultural Science and Technology Press, 2008. p 5 (in Chinese). |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[3] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[4] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[5] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[6] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[7] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[8] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[9] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[10] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[11] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
[12] | LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223. |
[13] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[14] | WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393. |
[15] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
|