Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3063-3073.doi: 10.3724/SP.J.1006.2023.34051

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.)

YE Xiao-Lei1(), GENG Guo-Tao1, XIAO Guo-Bin2, LYU Wei-Sheng2, REN Tao1, LU Zhi-Feng1,*(), LU Jian-Wei1   

  1. 1College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, Jiangxi, China
  • Received:2023-03-10 Accepted:2023-05-24 Online:2023-11-12 Published:2023-06-14
  • Supported by:
    National Natural Science Foundation of China(32272820);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZHQD002);International Magnesium Institute(IMI2018-02)

Abstract:

Magnesium (Mg) deficiency is one of the most serious problems in the main producing area of rapeseed in China. To evaluate the effectiveness of Mg fertilizer on seed yield and quality, field experiments were conducted at Jinxian, Jiangxi province and Anren, Hunan province during the 2020/2021 and 2021/2022 cropping seasons, with five Mg application rates (0, 15, 30, 45, and 60 kg MgO hm-2). Rapeseed yield and its components, seed Mg content, oil content, and fatty acid components were analyzed. The results showed that Mg application increased rapeseed yield by 12.0%-77.1%. Mg application rate for maximal seed yield was 21.4-45.6 kg MgO hm-2. Mg fertilizer increased the number of pods, number of seeds per pod, and 1000-weight by 5.0%-64.7%, 1.8%-19.6%, and 7.1%-8.7%, respectively, which had no significant effect on harvest density. After the application of Mg fertilizer, seed Mg concentration increased by 5.0%-30.3%, and the oil content increased by 0.63%-5.11%, but protein content reduced by 1.45%-2.34%. Seed water and glucosinolate concentration were independent of Mg nutrition. Mg application increased oil yield and protein yield per unit area by 14.4%-83.4% and 9.8%-68.1%, respectively. The amount of Mg fertilizer corresponding to the highest oil production was 30-45 MgO hm-2. As for fatty acid composition, Mg application increased the content of oleic acid and linolenic acid in seeds by 4.4%-16.0% and 3.8%-40.8%, respectively, but decreased the content of linoleic acid by 1.2%-10.1%, which had a non-significant effect on other fatty acid components. In conclusion, Mg application was crucial to the synergistic improvement of yield and quality by improving seed yield and its components (the number of pods per plant, the number of grains per pod, and 1000-grain weight), seed oil content, and the unsaturated fatty acid content. The amount of Mg fertilizer corresponding to the highest yield and oil production was 30-45 MgO hm-2.

Key words: magnesium fertilizer, rapeseed, yield composition, fatty acid composition, magnesium content

Table 1

Physical and chemical properties of the top soil (0-20 cm) of the experiment fields"

年份
Year
地点
Experimental site
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有效镁Available Mg
(mg kg-1)
2020-2021 江西进贤 Jinxian, Jiangxi 5.13 23.1 2.13 14.6 246.6 83.8
湖南安仁 Anren, Hunan 5.41 8.4 0.71 11.6 99.9 23.8
2021-2022 江西进贤 Jinxian, Jiangxi 4.96 22.2 1.29 38.7 195.0 93.2
湖南安仁 Anren, Hunan 5.06 29.5 1.65 11.6 71.0 73.5

Fig. 1

Effect of magnesium fertilizer on yield in oilseed rape Different lowercase letters in the same site indicate that there are significant differences among different magnesium fertilizer treatments at P < 0.05."

Table 2

Effects of magnesium fertilizer on yield components in oilseed rape"

年份
Year
试验地点
Experimental site
镁肥用量
Magnesium
application rate
(kg hm-2)
产量构成因子 Yield composition
收获密度
Harvest density
(plants m-2)
单株角果数
Pod number
每角粒数
Seed per pod
千粒重
1000-seed weight
(g)
2020-2021 进贤Jinxian 0 48.0±1.6 a 215±18 b 21.3±1.9 a 4.53±0.12 a
15 44.0±5.7 a 276±7 a 21.0±2.2 a 4.45±0.04 a
30 46.7±3.4 a 260±10 ab 20.7±2.5 a 4.56±0.10 a
45 47.0±5.1 a 296±52 a 21.0±0.8 a 4.46±0.04 a
60 48.3±3.3 a 312±12 a 19.3±3.4 a 4.41±0.02 a
安仁Anren 0 54.1±3.8 a 140±2 a 16.8±1.0 b 3.67±0.03 b
15 54.8±1.9 a 131±11 a 18.7±0.5 ab 3.99±0.09 a
30 48.1±1.6 a 140±25 a 17.1±1.2 b 3.95±0.07 a
45 47.0±6.1 a 151±23 a 17.5±2.3 ab 3.94±0.07 a
60 49.3±3.7 a 122±9 a 20.1±0.1 a 3.93±0.08 a
试验地点 Experimental site (S) * ** ** **
镁肥用量 Magnesium application rate (Mg) ns ns ns ns
试验地点×镁肥用量 S×Mg ns * ns ns
2021-2022 进贤Jinxian 0 39.5±1.0 a 103±6 c 24.3±0.4 a 4.40±0.31 a
15 38.7±2.3 a 120±8 bc 24.3±0.2 a 4.35±0.11 a
30 43.2±3.9 a 121±13 abc 24.3±0.4 a 4.23±0.21 a
45 38.1±4.3 a 140±3 a 24.4±0.2 a 4.37±0.13 a
60 41.1±5.2 a 124±9 ab 25.0±0.2 a 4.21±0.16 a
安仁Anren 0 41.2±2.3 a 119±3 c 17.6±0.2 a 4.64±0.11 a
15 42.1±0.7 a 125±10 c
17.9±0.8 a 4.54±0.08 a
30 43.1±1.9 a 163±3 b 17.9±0.1 a 4.59±0.04 a
45 42.1±4.0 a 168±1 b 18.6±1.1 a 4.38±0.21 a
60 42.6±1.7 a 196±14 a 18.7±1.0 a 4.57±0.03 a
试验地点 Experimental site (S) * ** ** **
镁肥用量 Magnesium application rate (Mg) ns ** ns ns
试验地点×镁肥用量 S×Mg ns ** ns ns

Fig. 2

Effect of magnesium fertilizer on magnesium content in oilseed rape Different lowercase letters indicate that there are significant differences among different magnesium fertilizer treatments at P < 0.05. * and ** indicate there are significant difference in the 0.05 and 0.01 probability levels, respectively. ns: not significant difference."

Table 3

Effect of magnesium fertilizer on the content of main components in oilseed rape"

年份
Year
试验地点
Experimental site
镁肥施用量
Magnesium
application rate
(kg hm-2)
含水率
Water content (%)
含油率
Oil content
(%)
蛋白质含量
Protein content (%)
硫甙含量
Glucosinolate content
(μmol g-1)
2020-2021 进贤Jinxian 0 5.31±0.61 a 45.82±1.10 b 23.23±0.86 a 30.06±5.80 a
15 5.22±0.55 a 48.10±0.48 a 21.52±0.80 ab 29.99±10.78 a
30 5.69±0.27 a 48.64±0.52 a 21.81±0.82 ab 30.42±0.66 a
45 5.32±0.55 a 48.01±0.48 a 21.56±0.80 ab 29.89±3.87 a
60 5.48±0.27 a 48.75±0.79 a 21.17±0.65 b 30.33±4.95 a
安仁Anren 0 4.70±0.38 a 40.93±1.05 a 26.11±1.29 ab 24.15±10.46 a
15 5.01±0.12 a 41.75±1.08 a 27.71±0.76 a 25.03±9.26 a
30 4.50±0.10 a 41.80±0.62 a 26.64±0.47 ab 23.80±1.71 a
45 4.65±0.97 a 42.76±1.18 a 24.42±2.03 c 23.37±3.77 a
60 4.58±0.53 a 42.82±0.33 a 24.10±1.42 c 26.49±5.58 a
试验地点 Experimental site (S) ** ** ** ns
镁肥用量 Magnesium application rate (Mg) ns ** * ns
试验地点×镁肥用量 S×Mg ns ns ns ns
2021-2022 进贤Jinxian 0 5.65±0.23 a 48.24±0.16 b 23.54±0.30 a 32.91±9.80 a
15 5.55±0.28 a 48.88±0.21 ab 23.07±0.64 ab 31.00±11.71 a
30 5.36±0.23 a 50.07±0.99 a 22.88±0.80 ab 38.52±5.63 a
45 5.65±0.24 a 49.67±0.67 ab 22.09±0.04 b 27.97±6.47 a
60 5.45±0.55 a 48.87±0.75 ab 22.37±0.25 ab 24.85±10.26 a
安仁Anren 0 4.95±0.19 a 37.98±1.70 b 29.23±0.52 a 24.15±10.46 a
15 4.68±0.41 a 40.62±1.09 ab 29.41±0.54 a 22.39±11.26 a
30 4.68±0.25 a 42.48±1.27 a 27.99±0.67 ab 23.80±1.71 a
45 5.18±0.42 a 43.09±2.17 a 26.89±1.70 b 23.37±3.77 a
60 4.91±0.19 a 41.58±1.01 a 27.34±0.50 ab 26.49±5.58 a
试验地点 Experimental site (S) ** ** ** ns
镁肥用量 Magnesium application rate (Mg) ns ** ** ns
试验地点×镁肥用量 S×Mg ns ns ns ns

Table 4

Effect of magnesium fertilizer on fatty acid composition in rapeseed oil"

年份
Year
试验地点
Experimental
site
镁肥用量
Magnesium
application rate
(kg hm-2)
不饱和脂肪酸
Unsaturated fatty acids
饱和脂肪酸
Saturated fatty acids
油酸
Oleic acid content (%)
亚油酸
Linoleic acid content (%)
亚麻酸
Linolenic acid content (%)
芥酸
Erucic acid content (%)
硬脂酸
Stearic acid content (%)
棕榈酸
Palmitic acid content (%)
2020-2021 进贤Jinxian 0 44.53±1.06 c 19.66±0.71 a 8.16±0.84 a 2.26±0.98 a 1.54±0.30 a 4.24±0.17 a
15 46.66±1.01 bc 18.36±0.49 ab 8.12±0.98 a 1.82±0.43 a 1.74±0.15 a 4.33±0.04 a
30 49.02±2.30 ab 17.40±1.22 ab 8.74±1.47 a 1.72±0.66 a 1.68±0.24 a 4.21±0.12 a
45 48.46±1.79 ab 17.20±1.29 b 9.46±1.31 a 1.86±0.21 a 1.72±0.14 a 4.49±0.09 a
60 51.67±1.45 a 17.67±0.87 ab 9.57±1.08 a 1.10±0.15 a 1.76±0.35 a 4.51±0.22 a
安仁Anren 0 56.80±0.41 b 21.24±0.73 a 5.66±0.10 b 1.87±0.79 a 2.69±0.31 a 4.67±0.17 a
15 55.19±2.44 b 20.98±0.78 ab 6.77±1.43 ab 2.07±0.85 a 2.68±0.15 a 4.68±0.22 a
30 55.39±1.17 b 20.17±0.11 ab 7.6±0.89 ab 1.82±0.83 a 2.87±0.28 a 4.87±0.19 a
45 60.30±2.86 ab 20.01±0.64 ab 7.63±0.24 ab 1.09±0.12 a 2.93±0.09 a 4.91±0.32 a
60 63.41±3.48 a 19.83±0.13 b 7.97±1.21 a 1.00±0.01 a 2.87±0.15 a 5.14±0.20 a
试验地点
Experimental site (S)
** ** ** ns ** **
镁肥用量
Magnesium application rate (Mg)
** * ns ns ns ns
试验地点×镁肥用量 S×Mg ns ns ns ns ns ns
2021-2022 进贤Jinxian 0 55.01±1.51 b 18.00±0.59 a 9.51±0.05 a 2.05±1.15 ab 0.73±0.21 a 4.11±0.17 a
15 57.44±1.34 ab 16.69±0.45 a 9.70±0.62 a 1.82±0.43 ab 0.64±0.10 a 4.05±0.18 a
30 60.22±0.41 a 17.70±0.79 a 9.81±0.36 a 2.50±0.13 a 0.65±0.37 a 4.21±0.33 a
45 59.84±0.60 a 17.85±0.99 a 9.93±0.51 a 2.08±0.33 ab 0.53±0.31 a 4.27±0.10 a
60 58.53±2.30 ab 17.23±1.39 a 10.05±0.73 a 1.10±0.15 b 0.75±0.20 a 4.01±0.15 a
安仁Anren 0 55.32±3.75 a 17.42±1.42 a 10.64±0.35 b 1.87±0.79 a 1.13±0.22 a 4.66±0.07 a
15 57.80±2.35 a 17.48±0.92 a 11.05±0.26 ab 1.70±0.99 a 0.94±0.11 a 4.68±0.29 a
30 59.68±2.87 a 17.19±1.18 a 11.57±0.51 a 1.82±0.83 a 1.13±0.09 a 4.69±0.50 a
45 58.94±1.00 a 16.90±0.32 a 11.24±0.41 ab 1.09±0.12 a 1.20±0.07 a 4.76±0.34 a
60 57.40±2.27 a 17.26±0.83 a 11.06±0.60 ab 1.00±0.01 a 1.10±0.06 a 4.69±0.31 a
试验地点
Experimental site (S)
ns ns ** ns ns **
镁肥用量
Magnesium application rate (Mg)
* ns ns ns ns ns
试验地点×镁肥用量 S×Mg ns ns ns ns ns ns

Table 5

Effect of magnesium fertilizer on oil yield and protein yield in oilseed rape"

年份
Year
试验地点
Experimental site
镁肥用量
Magnesium application rate (kg hm-2)
理论产油量
Rapeseed oil production
(kg hm-2)
理论蛋白产量
Protein production
(kg hm-2)
2020-2021 进贤Jinxian 0 421.5±11.5 c 214.2±16.1 c
15 548.8±57.0 b 246.6±36.5 bc
30 630.9±42.9 b 283.9±32.4 ab
45 726.7±38.0 a 326.8±25.7 a
60 730.1±30.4 a 317.1±14.1 a
安仁Anren 0 703.0±9.7 d 449.0±28.3 b
15 804.3±10.4 c 533.9±14.7 a
30 818.6±26.5 bc 521.6±13.5 a
45 861.3±17.4 ab 493.0±53.4 ab
60 888.5±36.7 a 498.8±7.6 ab
试验地点 Experimental site (S) ** **
镁肥用量 Magnesium application rate (Mg) ** **
试验地点×镁肥用量 S×Mg * ns
2021-2022 进贤Jinxian 0 475.2±43.8 c 232.2±25.1 c
15 621.9±43.5 b 294.0±27.8 b
30 790.7±26.7 a 362.3±31.0 a
45 871.4±54.9 a 387.3±19.5 a
60 853.1±40.7 a 390.3±12.6 a
安仁Anren 0 498.5±7.5 d 384.5±21.8 c
15 628.2±77.1 c 454.6±52.7 bc
30 791.1±19.1 b 521.3±13.8 ab
45 909.8±23.2 a 569.8±55.2 a
60 886.5±17.5 a 583.5±28.2 a
试验地点 Experimental site (S) ** ns
镁肥用量 Magnesium application rate (Mg) ** *
试验地点×镁肥用量 S×Mg * ns

Fig. 3

Correlation analysis of each index *, **, and *** mean significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1-8 (in Chinese with English abstract).
[3] 徐华丽. 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文,湖北武汉, 2012.
Xu H L. Investigation on the Fertilization and Effect of Formulated Fertilization of Winter Rapeseed in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[4] 李慧. 中国冬油菜氮磷钾肥施用效果与推荐用量研究. 华中农业大学博士学位论文,湖北武汉, 2015.
Li H. Fertilization Effect and Fertilizer Recommendation of Nitrogen, Phosphorus and Potassium on the Winter Oilseed Rape of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[5] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712-720.
Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. Prospects of research on fertilization status and technology of rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 712-720 (in Chinese with English abstract).
[6] 王寅, 鲁剑巍, 李小坤, 任涛, 丛日环, 占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39: 1491-1500.
doi: 10.3724/SP.J.1006.2013.01491
Wang Y, Lu J W, Li X K, Ren T, Cong R H, Zhan L P. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.)direct-sown in the Yangtze River Basin. Acta Agron Sin, 2013, 39: 1491-1500 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.01491
[7] 杨文祥, 王强盛, 王绍华, 李刚华, 丁艳锋. 镁肥对水稻镁吸收与分配及稻米食味品质的影响. 西北植物学报, 2006, 26: 2473-2478.
Yang W X, Wang Q S, Wang S H, Li G H, Ding Y F. Effects of Mg fertilization on Mg uptake and partition by rice and rice cooking quality. Acta Bot Boreali-Occident Sin, 2006, 26: 2473-2478 (in Chinese with English abstract).
[8] 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28: 295-299.
Zou J, Lu J W, Wu J S, Li Y S. Dynamics of calcium, magnesium and sulfur uptake in 4 double-low rapeseed (Brassica napus L.)varieties. J Huazhong Agric Univ, 2009, 28: 295-299 (in Chinese with English abstract).
[9] 白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004, (2): 3-5.
Bai Y L, Jin J Y, Yang L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils Fert, 2004, (2): 3-5 (in Chinese with English abstract).
[10] 陆志峰, 任涛, 鲁剑巍. 我国冬油菜种植区土壤有效镁状况与油菜施镁效果. 华中农业大学学报, 2021, 40(2): 17-23.
Lu Z F, Ren T, Lu J W. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. J Huazhong Agric Univ, 2021, 40(2): 17-23 (in Chinese with English abstract).
[11] Chen X, Wang Z, Muneer M A, Ma C, He D, White P J, Li C, Zhang F. Short planks in the crop nutrient barrel theory of China are changing: evidence from 15 crops in 13 provinces. Food Energy Secur, 2022, 12: e389.
doi: 10.1002/fes3.389
[12] 李丹萍, 刘敦一, 张白鸽, 杨敏, 李文丽, 石孝均, 陈新平, 张跃强. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征. 土壤学报, 2018, 55: 1513-1524.
Li D P, Liu D Y, Zhang B G, Yang M, Li W L, Shi X J, Chen X P, Zhang Y Q. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in South China relative to fertilizer type. Acta Pedol Sin, 2018, 55: 1513-1524 (in Chinese with English abstract).
[13] 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53: 1606-1616.
doi: 10.3864/j.issn.0578-1752.2020.08.010
Ren T, Guo L X, Zhang L M, Yang X K, Liao S P, Zhang Y Y, Li X K, Cong R H, Lu J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Sci Agric Sin, 2020, 53: 1606-1616 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.08.010
[14] Chen Z C, Peng W T, Li J, Liao H. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol, 2018, 74: 142-152.
doi: S1084-9521(17)30257-4 pmid: 28822768
[15] Cakmak I, Kirkby E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant, 2008, 133: 692-704.
pmid: 18724409
[16] Senbayram M, Gransee A, Wahle V, Thiel H. Role of magnesium fertilizers in agriculture: plant-soil continuum. Crop Past Sci, 2015, 66: 1219-1229.
doi: 10.1071/CP15104
[17] Wang Z, Hassan M U, Nadeem F, Wu L, Zhang F, Li X. Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Front Plant Sci, 2020, 10: 1727.
doi: 10.3389/fpls.2019.01727
[18] 林齐民, 吕滨, 陈永柳. 水稻镁肥肥效及土壤镁肥力的丰缺指标. 福建农学院学报, 1990, (4): 450-456.
Lin Q M, Lyu B, Chen Y L. Effect of magnesium fertilizer on rice and the index of magnesium fraction in paddy soil. J Fujian Agric Coll, 1990, (4): 450-456 (in Chinese).
[19] 丁玉川, 焦晓燕, 聂督, 程滨, 赵瑞芬, 刘平. 山西省主要类型土壤镁素供应状况及镁肥施用效果. 水土保持学报, 2011, 25(6): 139-143.
Ding Y C, Jiao X Y, Nie D, Cheng B, Zhao R F, Liu P. Magnesium supply status of main soil types and effects of magnesium fertilizer oil yield and quality of crops in Shanxi province. J Soil Water Conserv, 2011, 25(6): 139-143 (in Chinese with English abstract).
[20] Koch M, Busse M, Naumann M, Jákli B, Smit I, Cakmak I, Hermans C, Pawelzik E. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol Plant, 2019, 166: 921-935.
doi: 10.1111/ppl.12846 pmid: 30288757
[21] Poglodzinski R, Barlog P, Grzbisz W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ, 2021, 67: 507-513.
doi: 10.17221/336/2021-PSE
[22] Führs H. The significance of magnesium for crop quality. Plant Soil, 2013, 368: 101-128.
doi: 10.1007/s11104-012-1555-2
[23] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄. 菜籽油与不同食用植物油营养品质的比较: 兼论油菜品质的遗传改良. 中国粮油学报, 2014, 29(6): 122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X. Comparison of nutritional values between rapeseed oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereals Oils Assoc, 2014, 29(6): 122-128 (in Chinese with English abstract).
[24] 田贵生, 陆志峰, 任涛, 鲁剑巍. 镁肥基施及后期喷施对油菜产量与品质的影响. 中国土壤与肥料, 2019, (5): 85-90.
Tian G S, Lu Z F, Ren T, Lu J W. Effects of spraying magnesium on the yield and quality of oilseed rape under different magnesium fertilizer application rates. Soil Fert Sci China, 2019, (5): 85-90 (in Chinese with English abstract).
[25] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Survey Office. Chinese Soil. Beijing: China Agriculture Press, 1998 (in Chinese).
[26] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000 (in Chinese).
[27] 李培武, 谢立华, 李光明, 张文, 杨湄, 陈洪. 双低油菜质量标准及其检测技术. 中国食物与营养, 2003, (6): 22-25.
Li P W, Xie L H, Li G M, Zhang W, Yang M, Chen H. Double low oilseed rape quality standard and its testing technology. Food Nutr China, 2003, (6): 22-25 (in Chinese).
[28] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[29] Zhang H, Flottmann S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur J Agric, 2018, 96: 70-76.
doi: 10.1016/j.eja.2018.03.005
[30] Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant, 2016, 38: 145.
doi: 10.1007/s11738-016-2165-z
[31] Xu X F, Wang B, Lou Y, Han W J, Lu J Y, Li D D, Li L G, Zhu J, Yang Z N. Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. . Plant J, 2015, 84: 925-936.
doi: 10.1111/tpj.13054
[32] Sun K, Hunt K, Hauser B A. Ovule abortion in Arabidopsis triggered by stress. Plant Physiol, 2004, 135: 2358-2367.
doi: 10.1104/pp.104.043091
[33] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34: 638-644.
Liu X W, Lu J W, Li X K, Bu R Y, Liu B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chin J Oil Crop Sci, 2012, 34: 638-644 (in Chinese with English abstract).
[34] Ruuska S A. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol, 2004, 136: 3409-3409.
doi: 10.1104/pp.104.900126
[35] Tränkner M, Tavakol E, Jákli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant, 2018, 163: 414-431.
doi: 10.1111/ppl.2018.163.issue-3
[36] Schwender J R, John B O. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361.
doi: 10.1104/pp.004275 pmid: 12226514
[37] Koley S, Chu K L, Mukherjee T, Morley S A, Klebanovych A, Czymmek K J, Allen D K. Metabolic synergy in Camelina reproductive tissues for seed development. Sci Adv, 2022, 8: eabo7683.
doi: 10.1126/sciadv.abo7683
[38] 叶晓磊, 周雄, 邵文胜, 耿国涛, 鲁剑巍. 两种镁肥在直播冬油菜上施用效果比较. 中国农技推广, 2019, 35(增刊1): 123-125.
Ye X L, Zhou X, Shao W S, Geng G T, Lu J W. Comparison of the application effects of two magnesium fertilizers on direct seeding winter oilseed rape. China Agric Technol Extens, 2019, 35(S1): 123-125 (in Chinese).
[1] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[2] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[3] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[4] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[5] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[6] NING Ning, MO Jiao, HU Bing, LI Da-Shuang, LOU Hong-Xiang, WANG Chun-Yun, BAI Chen Yang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, LI Xiao-Hua, JIA Cai-Hua, ZHOU Guang-Sheng. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley  [J]. Acta Agronomica Sinica, 2023, 49(12): 3315-3327.
[7] GONG Ruo-Lin, SONG Bo, YANG Zhi-Ye, LU Li-Jing, DONG Jun-Gang. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars [J]. Acta Agronomica Sinica, 2023, 49(10): 2777-2792.
[8] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[9] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[10] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[11] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[12] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[13] Qing-Yun GUO, Bo WANG, Jie KUAI, Chun-Yu ZHANG, Gen-Ze LI, Hui-Xian KANG, Ting-Dong FU, Guang-Sheng ZHOU. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars [J]. Acta Agronomica Sinica, 2020, 46(5): 725-733.
[14] JIN Rong,LI Zhong,YANG Yun,ZHOU Fang,DU Lun-Jing,LI Xiao-Long,KONG Fan-Lei,YUAN Ji-Chao. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan [J]. Acta Agronomica Sinica, 2020, 46(4): 614-630.
[15] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .