Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1829-1840.doi: 10.3724/SP.J.1006.2024.34190

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin

XIE Xiong-Ze*(), XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng   

  1. Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
  • Received:2023-11-14 Accepted:2024-04-01 Online:2024-07-12 Published:2024-04-18
  • Contact: *E-mail: 2446668888@msn.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

Based on the daily meteorological data of 129 cities in 11 provinces and 2 municipalities in the Yangtze River Basin for nearly 20 years, the effective precipitation and water requirement of winter rapeseed during the whole growth period and various growth stages were calculated by empirical formulas, the improved HS data model recommended by Food and Agriculture Organization (FAO), and crop coefficients. Furthermore, the water surplus/deficit index and the frequency of droughts and waterlogging disasters over multiple years were analyzed. The results indicated that the effective precipitation during various growth stages of winter rapeseed in the Yangtze River Basin had a decreasing belt-like distribution from southeast to northwest. Specifically, the plains around Poyang Lake and Dongting Lake, as well as Hangzhou-Jiaxing-Huzhou Plain, had abundant effective precipitation, while the effective precipitation in the coastal areas of the middle and lower reaches of the Yangtze River mainstream was moderate. Conversely, the effective precipitation was relatively low along the line from Qinling Mountains to Huaihe River, in Sichuan Basin, and on Yungui Plateau. The water requirement during various growth stages exhibits a distribution pattern of high in the southwest, moderate in the southeast, and low in the northwest. Among them, the water requirement was the highest in Yunnan Province, moderate in the plains of the middle and lower reaches of the Yangtze River, and the lowest in the areas along the line from Qinling Mountains to Huaihe River, in Sichuan Basin and Guizhou province. The spatial distribution characteristics of water surplus/deficit over multiple years indicated moderate water supply in the coastal areas of the middle and lower reaches of Yangtze River mainstream, insufficient water supply along the line from Qinling Mountains to Huaihe River, in Sichuan Basin, and on Yungui Plateau. The temporal evolution characteristics of water surplus/deficit indicated that droughts are more frequent at seedling stage in the upper reaches of the Yangtze River, with the occasional occurrences of waterlogging disasters, while waterlogging disasters were more frequent in the middle and lower reaches, with the occasional occurrences of droughts. At other growth stages, droughts were frequent in the upper reaches, while both droughts and waterlogging disasters were frequent in the middle and lower reaches. To ensure appropriate water supply at various growth stages of winter rapeseed in Yangtze River Basin, it was recommended to focus on adequate irrigation in the upper reaches at seedling stage and timely drainage in the middle and lower reaches. At other growth stages, sufficient irrigation should be emphasized in the upper reaches, timely irrigation in the cities on the northern bank of the mainstream in the middle and lower reaches, and timely drainage in the cities on the southern bank of the mainstream in the middle and lower reaches, aiming to promote high and stable yields of winter rapeseed in Yangtze River Basin and ensure a stable supply of domestic rapeseed raw materials.

Key words: Yangtze River Basin, winter rapeseed, effective precipitation, water requirement, trend of change, water surplus/ deficit

Fig. 1

Study area overview Chinese standard map: Map approval number GS (2019) 1822, with no modifications of the map boundaries."

Table 1

Dominant winter rapeseed producing areas in Yangtze River Basin"

生态区
Ecoregion
省(直辖市)
Province (Municipality)
市(州)
City (Autonomous)
长江上游
Upper reaches
云南省Yunnan 保山市, 楚雄州, 大理州, 德宏州, 迪庆州, 红河州, 昆明市, 丽江市, 临沧市, 怒江州, 普洱市, 曲靖市, 文山州, 玉溪市, 昭通市
Baoshan, Chuxiong, Dali, Dehong, Diqing, Honghe, Kunming, Lijiang, Lincang, Nujiang, Puer, Qujing, Wenshan, Yuxi, Zhaotong
四川省Sichuan 阿坝州, 巴中市, 成都市, 达州市, 德阳市, 甘孜州, 广安市, 广元市, 乐山市, 泸州市, 眉山市, 绵阳市, 南充市, 内江市, 攀枝花市, 遂宁市, 雅安市, 宜宾市, 资阳市, 自贡市
Aba, Bazhong, Chengdu, Dazhou, Deyang, Ganzi, Guangan, Guangyuan, Leshan, Luzhou, Meishan, Mianyang, Nanchong, Neijiang, Panzhihua, Suining, Ya’an, Yibin, Ziyang, Zigong
重庆市Chongqing 重庆市Chongqing
贵州省Guizhou 安顺市, 毕节市, 贵阳市, 六盘水市, 黔东南州, 黔南州, 黔西南州, 铜仁市, 遵义市
Anshun, Bijie, Guiyang, Liupanshui, Qiandongnan, Qiannan, Qianxinan, Tongren, Zunyi
陕西省Shaanxi 汉中市Hanzhong
长江中游
Middle reaches
湖北省Hubei 鄂州市, 恩施自治州, 黄冈市, 黄石市, 荆门市, 荆州市, 潜江市, 十堰市, 随州市, 天门市, 武汉市, 仙桃市, 咸宁市, 襄阳市, 孝感市, 宜昌市
Ezhou, Enshi, Huanggang, Huangshi, Jingmen, Jingzhou, Qianjiang, Shiyan, Suizhou, Tianmen, Wuhan, Xiantao, Xianning, Xiangyang, Xiaogan, Yichang
湖南省Hunan 常德市, 郴州市, 衡阳市, 怀化市, 娄底市, 邵阳市, 湘潭市, 湘西州, 益阳市, 永州市, 岳阳市, 张家界市, 长沙市, 株洲市
Changde, Chenzhou, Hengyang, Huaihua, Loudi, Shaoyang, Xiangtan, Xiangxi, Yiyang, Yongzhou, Yueyang, Zhangjiajie, Changsha, Zhuzhou
河南省Henan 信阳市Xinyang
江西省Jiangxi 抚州市, 赣州市, 吉安市, 景德镇市, 九江市, 南昌市, 萍乡市, 上饶市, 新余市, 宜春市,
鹰潭市
Fuzhou, Ganzhou, Ji’an, Jingdezhen, Jiujiang, Nanchang, Pingxiang, Shanrao, Xinyu, Yichun, Yingtan
安徽省Anhui 安庆市, 蚌埠市, 亳州市, 池州市, 滁州市, 阜阳市, 合肥市, 淮北市, 淮南市, 黄山市, 六安市, 马鞍山市, 宿州市, 铜陵市, 芜湖市, 宣城市
Anqing, Bengbu, Bozhou, Chizhou, Chuzhou, Fuyang, Hefei, Huaibei, Huainan, Huangshan, Lu’an, Ma’anshan, Suzhou, Tongling, Wuhu, Xuancheng
长江下游
Lower reaches
江苏省Jiangsu 常州市, 淮安市, 连云港市, 南京市, 南通市, 苏州市, 宿迁市, 泰州市, 无锡市, 徐州市,
盐城市, 扬州市, 镇江市
Changzhou, Huai’an, Lianyungang, Nanjing, Nantong, Suzhou, Suqian, Taizhou, Wuxi, Xuzhou, Yangcheng, Yangzhou, Zhenjiang
上海市Shanghai 上海市Shanghai
浙江省Zhejiang 杭州市, 湖州市, 嘉兴市, 金华市, 丽水市, 宁波市, 衢州市, 绍兴市, 台州市, 温州市, 舟山市
Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui, Ningbo, Quzhou, Shaoxing, Taizhou, Wenzhou, Zhoushan

Fig. 2

Variation of crop coefficients during entire growth period in winter rapeseed The crop coefficients for different growth periods of M1/D1, M2/D2, M3/D3, M4/D4, M5/D5, M6/D6, and M7/D7 in different ecological regions are as follows: Yunnan-Guizhou Plateau sub-region: 10/10, 11/10, 12/25, 2/5, 3/1, 3/30, and 4/30; Sichuan Basin sub-region: 10/10, 11/10, 12/25, 2/10, 3/10, 4/10, and 5/10; Middle Reaches of the Yangtze River Sub-region: 10/10, 11/10, 12/25, 2/10, 3/10, 4/10, and 5/10; Lower reaches of Yangtze River sub-region: 10/25, 11/15, 12/25, 2/10, 3/10, 4/10, and 5/10."

Fig. 3

Spatial distribution of effective precipitation during different growth periods (a) seedling; (b) overwintering; (c) budding; (d) flowering; (e) ripening; (f) whole growth period. Chinese standard map: Map approval number GS (2019) 1822, with no modifications of the map boundaries."

Fig. 4

Spatial distribution of water requirements during different growth periods (a) seedling; (b) overwintering; (c) budding; (d) flowering; (e) ripening; (f) whole growth period. Chinese standard map: Map approval number GS (2019) 1822, with no modifications of the map boundaries."

Fig. 5

Spatial distribution of water surplus/deficit index during different growth periods (a) seedling; (b) overwintering; (c) budding; (d) flowering; (e) ripening; (f) whole growth period. Chinese standard map: Map approval number GS (2019) 1822, with no modifications of the map boundaries."

Fig. 6

Characteristics of annual changes in water surplus/deficit index for winter rapeseed in the Yangtze River Basin The order of provinces and provincial-level cities from bottom to top corresponds to the order of cities listed in Table 1."

Table 2

Statistical results of frequency of drought and waterlogging disasters in winter rapeseed areas of Yangtze River Basin (%)"

生育阶段
Growth stage
灾害情况
Disaster situation
长江上游Upper reaches 长江中游Middle reaches 长江下游Lower reaches
云南
Yunnan
四川
Sichuan
重庆
Chongqing
贵州
Guizhou
陕西
Shaanxi
湖北
Hubei
湖南
Hunan
河南
Hunan
江西
Jiangxi
安徽
Anhui
江苏
Jiangsu
上海
Shanghai
浙江
Zhejiang
苗期
Seedling
旱Drought 58 50 5 25 25 7 6 15 5 15 22 10 3
无旱无涝Suitable 40 46 65 63 65 62 44 70 45 58 55 60 53
涝Waterlogging 2 5 30 12 10 31 51 15 50 27 24 30 45
越冬期Overwintering 旱Drought 94 100 100 93 100 59 30 55 18 41 43 30 18
无旱无涝Suitable 6 0 0 7 0 38 62 45 59 53 50 55 63
涝Waterlogging 0 0 0 0 0 3 8 0 23 7 7 15 20
蕾薹期
Budding
旱Drought 96 99 100 91 100 45 23 55 12 48 58 35 23
无旱无涝Suitable 4 1 0 9 0 46 64 45 50 41 37 55 47
涝Waterlogging 1 0 0 0 0 9 13 0 38 11 5 10 30
花期
Flowering
旱Drought 97 95 85 83 90 55 20 80 8 64 86 80 35
无旱无涝Suitable 3 5 15 17 10 42 78 20 80 36 14 20 65
涝Waterlogging 0 0 0 0 0 3 3 0 12 0 0 0 0
角果期
Ripening
旱Drought 91 56 10 41 65 28 8 50 3 48 68 80 24
无旱无涝Suitable 8 44 90 57 35 68 74 50 67 49 32 20 68
涝Waterlogging 0 0 0 2 0 5 18 0 30 3 0 0 9
全生育期
Whole growth period
旱Drought 98 94 45 68 100 22 1 40 0 34 46 10 2
无旱无涝Suitable 2 6 55 32 0 78 97 60 77 66 54 90 95
涝Waterlogging 0 0 0 0 0 0 3 0 23 0 0 0 4
[1] 何俊欧, 凌霄霞, 张建设, 张萌, 马迪, 孙梦, 刘永忠, 展茗, 赵明. 近35年湖北省低丘平原区玉米需水量及旱涝时空变化. 作物学报, 2017, 43: 1536-1547.
He J O, Ling X X, Zhang J S, Zhang M, Ma D, Sun M, Liu Y Z, Zhan M, Zhao M. Temporal-spatial variation of crop water requirement and frequency of drought and waterlogging disasters during maize growth stages in low hilly plain area of Hubei province in last 35 years. Acta Agron Sin, 2017, 43: 1536-1547 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01536
[2] 高晓丽, 徐俊增, 杨士红, 彭世彰, 王莹, 张和喜. 贵州地区主要作物需水规律与作物系数的研究. 中国农村水利水电, 2015, (1): 11-14.
Gao X L, Xu J Z, Yang S H, Peng S Z, Wang Y, Zhang H X. Water requirement pattern and crop coefficient of main crops in Guizhou province. Chin Rural Water Hydropower, 2015, (1): 11-14 (in Chinese with English abstract).
[3] Xu Q Q, Sami A, Zhang H, Jin X Z, Zheng W Y, Zhu Z Y, Wu L L, Lei Y H, Chen Z P, Li Y, Yu Y, Zhang F G, Zhou K J, Zhu Z H. Combine influence of low temperature and drought on different varieties of rapeseed (Brassica napus L.). South Afr J Bot, 2022, 147: 400-414.
[4] Tian C, Zhou X, Fahmy E A, Ding Z L, Zhran M A, Liu Q, Peng J W, Zhang Z H, Song H X, Guan C Y, Kheir A M S, Eissa M A. Balanced fertilization under different plant densities for winter oilseed rape (Brassica napus L.) grown on paddy soils in Southern China. Ind Crops Prod, 2020, 151: 112413.
[5] Zhang S J, Liao X, Zhang C L, Xu H J. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
[6] Faraji A, Latifi N, Soltani A, Rad A H. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric Water Manag, 2008, 96: 132-140.
[7] Zajac T, Klimekkopyra A, Oleksy A, Lorenckozik A, Ratajczak K. Analysis of yield and plant traits of oilseed rape (Brassica napus L.) cultivated in temperate region in light of the possibilities of sowing in arid areas. Acta Agrobot, 2016, 69: 1696.
[8] 殷艳, 廖星, 余波, 王汉中. 我国油菜生产区域布局演变和成因分析. 中国油料作物学报, 2010, 32: 147-151.
Yin Y, Liao X, Yu B, Wang H Z. Regional distribution evolvement and development tendency of Chinese rapeseed production. Chin J Oil Crop Sci, 2010, 32: 147-151 (in Chinese with English abstract).
[9] 赵曼利, 戴志刚, 顾炽明, 胡文诗, 李银水, 秦璐, 鲁明星, 廖星. 油菜用地养地的作物优势及其在冬闲田开发中的应用潜力. 中国油料作物学报, 2022, 44: 1139-1147.
doi: 10.19802/j.issn.1007-9084.2022221
Zhao M L, Dai Z G, Gu C M, Hu W S, Li Y S, Qin L, Lu M X, Liao X. Advantage of oilseed rape (Brassica napus L.) in land use and conservation and its application for winter fallow field. Chin J Oil Crop Sci, 2022, 44: 1139-1147 (in Chinese with English abstract).
[10] 周明圆, 刘君龙, 许继军, 洪晓峰, 袁喆. 近48年长江源区降水时空变化特征. 科学技术与工程, 2020, 20: 474-480.
Zhou M Y, Liu J L, Xu J J, Hong X F, Yuan Z. Spatial and temporal characteristics of precipitation in the source area of the Yangtze River in recent 48 years. Sci Technol Eng, 2020, 20: 474-480 (in Chinese with English abstract).
[11] 孙惠惠. 长江流域极端降水时空分布特征. 湖南师范大学硕士学位论文, 湖南长沙, 2019.
Sun H H. Spatial and Temporal Distribution Characteristics of Extreme Precipitation in the Yangtze River Basin. MS Thesis of Hunan Normal University, Changsha, Hunan, China, 2019(in Chinese with English abstract).
[12] 曾波, 王钦. 我国南方地区50年冬季降水和相对湿度特征分析. 长江流域资源与环境, 2018, 27: 828-839.
Zeng B, Wang Q. Analysis of precipitation and relative humidity in winter in South of China in the past 50 years. Resour Environ Yangtze Basin, 2018, 27: 828-839 (in Chinese with English abstract).
[13] Allen R, Pereira L, Raes D, Smith M, Allen R G, Pereira L S Martin S. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation Drainage Paper 56. FAO, 1998, 56: 1-15.
[14] Paredes P, Pereira L S, Almorox J, Darouich H. Reference grass evapotranspiration with reduced data sets: parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves- Samani equation using local climatic variables. Agric Water Manag, 2020, 24: 614-636.
[15] 孙朋, 谢新洲, 刘娜, 苏海民. 南北气候过渡区主要作物有效降水量、需水量及缺水量特征分析. 沈阳大学学报(自然科学版), 2019, 31: 474-482.
Sun P, Xie X Z, Liu N, Su H M. Analysis on characteristics of effective precipitation, water demand and water shortage of main crops in North and South climate transition zone. J Shenyang Univ (Nat Sci), 2019, 31: 474-482 (in Chinese with English abstract).
[16] 刘战东, 段爱旺, 肖俊夫, 刘祖贵. 旱作物生育期有效降水量计算模式研究进展. 灌溉排水学报, 2007, 26(3): 27-30.
Liu Z D, Duan A W, Xiao J F, Liu Z G. Research progress on the calculation model of effective precipitation during the growth period of dry crops. J Irrig Drain, 2007, 26(3): 27-30 (in Chinese with English abstract).
[17] 赵晗, 吴迪, 刘玉春, 徐锐. 基于多因素影响的区域旱作物有效降水量估算. 灌溉排水学报, 2019, 38(7): 101-109.
Zhao H, Wu D, Liu Y C, Xu R. Multi-factor analysis of the effective precipitation for crops in semi-arid region. J Irrig Drain, 2019, 38(7): 101-109 (in Chinese with English abstract).
[18] Ammar M E, Davies E G R. On the accuracy of crop production and water requirement calculations: process-based crop modeling at daily, semi-weekly, and weekly time steps for integrated assessments. J Environ Manag, 2019, 238: 460-472.
[19] 康绍忠, 蔡焕杰. 农业水管理学. 北京: 中国农业出版社, 1996. pp 158-161.
Kang S Z, Cai H J. Agricultural Water Management. Beijing: China Agriculture Press, 1996. pp 158-161 (in Chinese).
[20] Almorox J, Quej V H, Martí P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Kppen climate classes. J Hydrol, 2015, 528: 514-522.
[21] 孙爽, 杨晓光, 李克南, 赵锦, 叶清, 解文娟, 董朝阳, 刘欢. 中国冬小麦需水量时空特征分析. 农业工程学报, 2013, 29(15): 72-82.
Sun S, Yang X G, Li K N, Zhao J, Ye Q, Xie W J, Dong C Y, Liu H. Spatiotemporal characteristics of winter wheat water demand in China. Trans CSAE, 2013, 29(15): 72-82 (in Chinese with English abstract).
[22] 张浩, 马晓群, 王晓东. 安徽省冬小麦水分盈亏特征及其对产量的影响. 气象, 2015, 41: 899-906.
Zhang H, Ma X Q, Wang X D. Water budget characteristics of winter wheat and its impact on the yield in Anhui province. Meteorol Mon, 2015, 41: 899-906 (in Chinese with English abstract).
[23] 周浩, 金平, 夏卫生, 雷国平. 三江平原挠力河流域主要作物水分盈亏时空变化特征. 农业工程学报, 2020, 36(14): 159-166.
Zhou H, Jin P, Xia W S, Lei G P. Spatiotemporal variation characteristics of water surplus and deficit of major crops in the Naoli River Basin of the Sanjiang Plain. Trans CSAE, 2020, 36(14): 159-166 (in Chinese with English abstract).
[24] 王君勤, 叶生进, 樊毅. 中国不同气候区参考作物蒸散量计算模型适用性评价. 节水灌溉, 2022, (3): 82-91.
Wang J Q, Ye S J, Fan Y. Applicability evaluation of reference crop evapotranspiration calculation models in different climatic regions of China. Water Saving Irrig, 2022, (3): 82-91 (in Chinese with English abstract).
[25] 李隆安, 邱让建, 刘春伟. 基于气温估算参考作物蒸散量方法的对比与改进. 农业工程学报, 2021, 37(24): 123-130.
Li L A, Qiu R J, Liu C W. Comparison and improvement of estimation models for the reference evapotranspiration using temperature data. Trans CSAE, 2021, 37(24): 123-130 (in Chinese with English abstract).
[26] 李隆安. 基于气温估算参考作物蒸散量方法的评估与改进. 南京信息工程大学硕士学位论文, 江苏南京, 2023.
Li L A. Comparison and Improvement of Estimation Models for the Reference Evapotranspiration Using Temperature Data. MS Thesis of Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China, 2023 (in Chinese with English abstract).
[27] 刘小飞, 王景雷, 刘祖贵, 宋妮, 方文松. 基于日天气预报数据估算小麦生长季参考作物蒸散量. 中国农业气象, 2022, 43(3): 194-203.
Liu X F, Wang J L, Liu Z G, Song N, Fang W S. Daily weather forecast-based reference crop evapotranspiration estimation in wheat growing season. Chin J Agrometeorol, 2022, 43(3): 194-203 (in Chinese with English abstract).
[28] 王守荣. 全球水循环与水资源. 北京: 气象出版社, 2003. pp 97-101.
Wang S R. The Global Water Cycle and Water Resources. Beijing: China Meteorological Press, 2003. pp 97-101 (in Chinese).
[29] 陈婷, 敖天其, 黎小东. 长江流域近七十年空中水资源的时空变化特征. 中国农村水利水电, 2019, (5): 6-11.
Chen T, Ao T Q, Li X D. Temporal and spatial variation of air water resources in the Yangtze River basin in recent seventy years. Chin Rural Water Hydropower, 2019, (5): 6-11 (in Chinese with English abstract).
[1] HE Xu-Gang, MAMAT Sawut, XIA Zi-Yang, SHI Jun-Yin, HE Xiao-Ning, SHENG Yan-Fang, LI Rong-Peng. Spatio-temporal characteristics of water requirement of main crops in Xinjiang from 1960 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(12): 3352-3363.
[2] NING Ning, MO Jiao, HU Bing, LI Da-Shuang, LOU Hong-Xiang, WANG Chun-Yun, BAI Chen-Yang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, LI Xiao-Hua, JIA Cai-Hua, ZHOU Guang-Sheng. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley [J]. Acta Agronomica Sinica, 2023, 49(12): 3315-3327.
[3] ZHANG Jia-Yun, MA Shu-Mei, YU Chang-Bing, WANG Shu-Bin, WEI Ya-Feng, YANG Wen-Yu, WANG Xiao-Chun. Characteristics of water supply-demand equilibrium and water production benefits of the dryland multiple cropping patterns in the Yangtze River basin [J]. Acta Agronomica Sinica, 2022, 48(11): 2891-2907.
[4] SHI Meng-Xia, ZHANG Jia-Xiao, SHI Xiao-Yu, CHU Qing-Quan, CHEN Fu, LEI Yong-Deng. Water use efficiency of several water-intensive crops in Hebei province in recent 20 years [J]. Acta Agronomica Sinica, 2021, 47(12): 2450-2458.
[5] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
[6] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
[7] HE Jun-Ou,LING Xiao-Xia,ZHANG Jian-She,ZHANG Meng,MA Di,SUN Meng,LIU Yong-Zhong,ZHAN Ming,ZHAO Ming. Temporal-spatial Variation of Crop Water Requirement and Frequency of Drought and Waterlogging Disasters during Maize Growth Stages in Low Hilly Plain Area of Hubei Province in Last 35 Years [J]. Acta Agron Sin, 2017, 43(10): 1536-1547.
[8] SUN Wan-Cang1,**,LIU Hai-Qing1,**,LIU Zi-Gang1,*,WU Jun-Yan,LI Xue-Cai,FANG Yan,ZENG Xiu-Cun,XU Yao-Zhao,ZHANG Ya-Hong,DONG Yun. Critical Index Analysisof Safe Over-wintering Rate ofWinter Rapeseed (Brassica rapa) in Cold and Arid Region in North China [J]. Acta Agron Sin, 2016, 42(04): 609-618.
[9] ZUO Qing-Song,KUAI Jie,YANG Shi-Fen,CAO Shi,YANG Yang,WU Lian-Rong,SUN Ying-Ying,ZHOU Guang-Sheng,WU Jiang-Sheng. Effects of Nitrogen Fertilizer and Planting Density on Canopy Structure and Population Characteristic of Rapeseed with Direct Seeding Treatment [J]. Acta Agron Sin, 2015, 41(05): 758-765.
[10] LIU Zi-Gang,ZHANG Chang-Sheng,SUN Wan-Cang,YANG Ning-Ning,WANG Yue,HE Li,ZHAO Cai-Xia,WU Jun-Yan,FANG Yan,ZENG Xiu-Cun. Comparison of Winter Rapeseed Varieties (Lines) Different with Cold-Resistance Planted in the Northern-Extending Regions in China under Low Temperature before Winter [J]. Acta Agron Sin, 2014, 40(02): 346-354.
[11] WANG Xue-Fang;SUN Wan-Cang;LI Xiao-Ze;WU Jun-Yan;MA Wei-Guo;ZENG Chao-Wu;PU Yuan-Yuan;YE Jian;KANG Yan-Li;LIU Hong-Xia;ZENG Jun;ZHANG Ya-Hong. Effects of Environment on Winter Rapeseed in Hexi Corridor [J]. Acta Agron Sin, 2008, 34(12): 2210-2217.
[12] XUE Chang-Ying;YANG Xiao-Guang;DENG Wei;ZHANG Tian-Yi;YAN Wei-Xiong;ZHANG Qiu-Ping;ROUZI Aji;ZHAO Jun-Fang;YANF Jie;Bouman B A M. Yield Potential and Water Requirement of Aerobic Rice in Beijing Analyzed by ORYZA2000 Model [J]. Acta Agron Sin, 2007, 33(04): 625-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!