Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1818-1828.doi: 10.3724/SP.J.1006.2024.34117

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil

YAN Zi-Heng(), WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-07-10 Accepted:2024-01-12 Online:2024-07-12 Published:2024-02-19
  • Contact: *E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1901205)

Abstract:

The chlorophyll in rapeseed seed is one of the key factors hindering the production of high-quality rapeseed oil. The higher chlorophyll content in rapeseed oil is not only make it poor in appearance, but also cause rapid photooxidation reaction. Therefore, it is of great significance to improve the appearance and nutritional quality of rapeseed oil by increasing the degradation rate of chlorophyll at seed ripening stage. In order to provide the theoretical and technical support for the production of high-quality rapeseed oil raw materials, a natural population consisting of 281 cultivars and breeding lines from different regions was used in a two-year field experiment in Wuhan, to investigate the chlorophyll degradation rate of rapeseed seeds, and the appearance and nutritional quality of oil, besides analysing the internal relationship between chlorophyll degradation and 1000-seed weight, oil content, oil colour, and its antioxidant capacity. The results showed that there were significant differences in chlorophyll degradation rate among different strains, and there was wide variation among the tested population materials. Correlation analysis showed that there was no significant correlation between chlorophyll degradation rate and 1000-seed weight and oil content of seed, but significantly negative correlation with the chlorophyll content of rapeseed oil. The chlorophyll content of rapeseed oil was positively correlated with the red value, yellow value, and peroxide value, while negatively correlated with antioxidant capacity of rapeseed oil. For the category with fast chlorophyll degradation rate, rapeseed oil had lighter colour, lower peroxide value, higher total phenol content, and antioxidant capacity. Compared to slow chlorophyll degrading strains, the activity of protochlorophyllide oxidoreductases (POR) enzyme was lower at 40 days after anthesis, whereas pheophorbide an oxygenase (PAO) enzyme activity was higher at 53 days after anthesis in the seeds of fast chlorophyll degrading strains, indicating that seed chlorophyll content was lower and its degradation rate was faster in seeds at the late stage of seed maturation.

Key words: rapeseed, seed chlorophyll, degradation rate, rapeseed oil, quality

Fig. 1

Main climatic factors in different growing seasons"

Fig. 2

Temporal chlorophyll content and expression patterns of BnaPOR and BnaPAO genes in rapeseed grains"

Fig. 3

Distribution of seed chlorophyll content in natural population of rapeseed"

Table 1

Phenotypic variation of seed chlorophyll content, 1000-seed weight, and oil content in natural population"

性状
Trait
2020-2021 2021-2022
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after
anthesis (mg g-1)
0.39 0.07 0.21 0.58 0.40 0.07 0.19 0.59
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after
anthesis ( mg g-1)
0.35 0.12 0.01 0.60 0.10 0.10 0.01 0.45
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.08 0.14 -0.28 0.52 0.30 0.10 0.00 0.55
千粒重
1000-seed weight (g)
4.11 0.69 2.36 6.85 4.01 0.69 2.35 5.83
含油量
Oil content (%)
45.62 3.48 37.18 61.65 44.69 3.48 37.02 52.85

Fig. 4

Correlation analysis between seed chlorophyll degradation and oil content and 1000-seed weight in different growing seasons"

Fig. 5

Distribution of seed chlorophyll content decrease in 105 accessions"

Table 2

Variation analysis of chlorophyll content and rapeseed oil characters in 105 accessions"

性状
Trait
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
种子叶绿素含量Seed chlorophyll content (mg kg-1) 7.18 3.28 1.28 18.11
油脂叶绿素含量Oil chlorophyll content (mg kg-1) 0.69 0.35 0.13 1.94
油脂红值 Oil red value 2.2 0.4 1.1 3.2
油脂黄值 Oil yellow value 25.6 5.0 18.0 42.0
油脂总酚含量Oil total-phenols content (mg 100 g-1) 16.55 4.08 9.88 24.98
油脂过氧化值Oil peroxide value (g 100 g-1) 0.046 0.017 0.015 0.095
油脂活性氧清除能力 Oil DPPH (μmol 100 g-1) 21.58 2.83 14.40 28.30
油脂铁离子还原能力 Oil FRAP (μmol 100 g-1) 42.47 6.23 28.40 56.24

Fig. 6

Correlation analysis between seed chlorophyll degradation rate and seed chlorophyll content (A) and seed and rapeseed oil chlorophyll contents (B) ** means significant correlation at P < 0.01."

Fig. 7

Systematic clustering of seed chlorophyll degradation rates in 105 accessions The combinations of the C and numbers represent the corresponding number of 105 accessions, respectively."

Table 3

Phenotypic analysis of chlorophyll content in different category of seeds in systematic clustering"

类别
Type
性状
Trait
平均值Mean 标准差
SD
最小值
Min.
最大值
Max.
类别I
Category I
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.51 0.05 0.45 0.59
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.04 0.03 0.01 0.09
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.47 0.04 0.43 0.55
类别II
Category II
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.39 0.07 0.26 0.57
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.07 0.06 0.01 0.34
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.32 0.06 0.21 0.42
类别III
Category III
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.39 0.07 0.25 0.50
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.26 0.07 0.08 0.35
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.13 0.05 0.01 0.19

Fig. 8

Effects of seed chlorophyll degradation rate on appearance and quality of rapeseed oil Different letters indicate significant differences between different categories according to Duncan’s multiple range tests at P < 0.05."

Fig. 9

Linear regression analysis between oil chlorophyll content and appearance and quality index of oil ** means significant difference at P < 0.01."

Table 4

Analysis of variance of chlorophyll content and key indices in rapeseed oil of six accessions"

品系
Line
籽粒叶绿素Seed chlorophyll content 菜籽油 Rapeseed oil
花后40 d
40 days after flowering (mg g-1)
花后53 d
53 days after flowering
(mg g-1)
降解量Degra-
dation
(mg g-1)
叶绿素
含量
Chlorophyll content
(mg g-1)
叶绿素
含量
Chlorophyll content
(mg g-1)
红值
Red value
黄值
Yellow value
过氧化值
Peroxide value
(g 100 g-1)
总酚含量
Total-
phenols content
(g 100 g-1)
活性氧
清除能力
DPPH
(μmol 100 g-1)
铁离子
还原能力
FRAP
(μmol 100 g-1)
SWU46 0.4623 ab 0.3877 a 0.0746 8.5748 b 0.824 c 2.3 c 27 b 0.052 c 19.39 a 21.71 b 48.68 a
CY20-66 0.4832 a 0.3633 a 0.1199 13.2383 a 1.057 a 2.4 a 29 a 0.058 b 14.78 c 19.71 bc 37.72 d
Huashuang 128 0.4956 a 0.3045 b 0.1911 8.4177 b 0.894 b 2.4 b 26 c 0.068 a 12.60 d 20.20 bc 41.69 c
A82 0.4201 c 0.0187 e 0.4014 2.8724 d 0.349 e 2.0 e 21 f 0.026 f 17.63 b 28.30 a 45.61 b
Ningyou 18 0.4391 bc 0.1223 c 0.3168 4.8432 c 0.559 d 2.2 d 24 d 0.049 d 12.82 b 19.71 bc 43.11 b
CY16-35 0.4376 bc 0.0491 d 0.3885 4.7428 c 0.488 d 2.2 d 23 e 0.035 e 12.63 d 19.30 c 40.78 c

Fig. 10

Enzyme activity analysis of protochlorophyllide oxidoreductases and pheophorbide a oxygenase in developmental seeds SWU46, CY20-66, and Huashuang 128 refer to the accessions with lower seed chlorophyll degradation rate; A82, NY18, and CY16-35 refer to the accessions with higher seed chlorophyll degradation rate. Different letters indicate significant differences between different categories according to Duncan’s multiple range tests at P < 0.05."

[1] Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. The physiological and proteomic characteristics of oilseed rape stem affect seed yield and lodging resistance under different planting densities and row spacing. J Agron Crop Sci, 2021, 5: 840-856.
[2] Yang R, Zhang L, Li P, Yu L, Mao J, Wang X, Zhang Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol, 2018, 74: 26-32.
[3] Choe E, Min D B. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf, 2006, 5: 169-186
[4] Wan C Y. Effects of enzymatic treatment on rapeseed oil degumming and quality. J Food Sci, 2007, 28: 194-198.
[5] Mikołajczak N, Tańska M, Konopka I. Impact of the addition of 4-vinyl-derivatives of ferulic and sinapic acids on retention of fatty acids and terpenoids in cold-pressed rapeseed and flaxseed oils during the induction period of oxidation. Food Chem, 2018, 278: 119-126.
[6] Li X, Yang R, Lyu C, Chen L, Zhang L, Ding X, Zhang W, Zhang Q, Hu C, Li P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
[7] Ghnaya A B, Charles G, Hourmant A, Hamida J B, Branchard M. Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol, 2009, 332: 363-370.
[8] Ayu D F, Andarwulan N, Hariyadi P, Purnomo E H. Effect of tocopherols tocotrienols beta-carotene and chlorophyll on the photo-oxidative stability of red palm oil. Food Sci Biotechnol, 2016, 25: 401-407.
[9] Szydłowska C A, Bartkowiak I, Karlović I, Karlovits G, Szłyk E. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem, 2011, 127: 556-563.
doi: 10.1016/j.foodchem.2011.01.040 pmid: 23140700
[10] Lee J, Choe E. Effects of phospholipids on the antioxidant activity of α-tocopherol in the singlet oxygen oxidation of canola oil. New Biotechnol, 2011, 28: 691-697.
doi: 10.1016/j.nbt.2011.04.013 pmid: 21621019
[11] Tautorus C L, Low N H. Chemical aspects of chlorophyll breakdown products and their relevance to canola oil stability. J Am Oil Chem Soc, 1993, 70: 843-847.
[12] Smolikova A. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. J Turbul, 2017, 18: 21-33.
[13] Paddock T N, Mason M E, Lima D F, Armstron G A. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol, 2010, 72: 445-457.
doi: 10.1007/s11103-009-9582-y pmid: 20012672
[14] Hörtensteiner S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol, 2013, 82: 505-517.
doi: 10.1007/s11103-012-9940-z pmid: 22790503
[15] Christ B, Süssenbacher I, Moser S, Bichsel N, Egert A, Müller T, Kräutler B, Hörtensteiner S. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell, 2013, 25: 1868-1880.
[16] 白晨阳, 何菡子, 贾才华, 李晓华, 任奕林, 叶俊, 汪波, 蒯婕, 周广生. 机械收获方式对油菜籽粒关键性状的影响. 中国农业科学, 2021, 54: 2991-3003.
doi: 10.3864/j.issn.0578-1752.2021.14.006
Bai C Y, He H Z, Jia C H, Li X H, Ren Y L, Ye J, Wang B, Kuai J, Zhou G S. Effect of the mechanical harvesting methods on the key traits of rapeseed. Sci Agric Sin, 2021, 54: 2991-3003 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.14.006
[17] Ning N, Hu B, Bai C Y, Li X H, Kuai J, He H Z, Ren Y L, Wang B, Jia C H, Zhou G S. Influence of two-stage harvesting on the properties of cold-pressed rapeseed (Brassica napus L.) oils. J Integr Agric, 2023, 22: 265-278.
[18] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究, 推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638 (in Chinese with English abstract).
[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003. pp 134-138.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2003. pp 134-138 (in Chinese).
[20] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 油菜籽叶绿素含量测定分光光度计法. GB/T 22182-2008, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Rapeseed-determination of chlorophyll content-spectrometric method. GB/T 22182-2008, 2008 (in Chinese).
[21] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 动植物油脂罗维朋色泽的测定. GB/T 22460-2008, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Animal and vegetable fats and oils-determination of locibond colour. GB/T 22460-2008, 2008 (in Chinese).
[22] Pokorny J L, Kalinova, Dysseler P. Determination of chlorophyll pigments in crude vegetable oils: results of a collaborative study and the standardized method (Technical Report). Pure Appl Chem, 1995, 10: 1781-1787.
[23] Kaur C, Kapoor H C. Anti-oxidant activity and total phenolic content of some asian vegetables. Int J Food Sci Technol, 2002, 37: 153-161.
[24] Shantha N C, Decker E A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J Aoac Int, 1994, 2: 421-424.
[25] Szydłowska C A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferricion spectrophotometric methods. Talanta, 2008, 76: 899-905.
doi: 10.1016/j.talanta.2008.04.055 pmid: 18656676
[26] Baud S, Lepiniec L C. Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010, 49: 235-249.
doi: 10.1016/j.plipres.2010.01.001 pmid: 20102727
[27] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582-593.
[28] Asokanthan P S, Johnson R W, Griffith M, Krol M. The photosynthetic potential of canola embryos. Physiol Plant, 2010, 101: 353-360.
[29] Fait A, Angelovici R, Less H, Ohad I, Urbanczyk W E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839-854.
[30] Díez B A, Bustamante J, Romero A, Ninot A, Tres A, Vichi S, Guardiola F. Effect of the storage conditions and freezing speed on the color and chlorophyll profile of premium extra virgin olive oils. Foods, 2023, 12: 222-234.
[31] Liang Y D, Zhang Y J, Jin W, Cao P R, Liu Y F. Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a sprague-dawley rat model. Food Funct, 2019, 10: 6503-6516.
doi: 10.1039/c9fo01592b pmid: 31536073
[32] Gotoh N, Wada S. The importance of peroxide value in assessing food quality and food safety. J Am Oil Chem Soc, 2006, 83: 473-474.
[33] Zheng C, Yang M, Zhou Q, Liu C S, Huang F H. Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Eur J Lipid Sci Technol, 2014, 116: 1675-1684.
[34] Kaleem A, Aziz S, Iqtedar M. Investigating changes and effect of peroxide values in cooking oils subject to light and heat. Fuuast J Biol, 2015, 5: 191-196.
[35] Terpinc P, Čeh B, Ulrih N P, Abramovič H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod, 2012, 39: 210-217.
[36] Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H. An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep, 2013, 3: 1217.
doi: 10.1038/srep01217 pmid: 23386973
[1] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[2] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[3] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[4] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[5] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[6] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[7] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[8] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[9] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[10] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[11] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[12] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[13] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[14] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[15] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[7] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[8] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[9] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[10] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .