Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1948-1960.doi: 10.3724/SP.J.1006.2024.31052

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays

PENG Xiao-Ai1(), LU Mao-Ang1, ZHANG Ling1, LIU Tong1, CAO Lei1, SONG You-Hong1, ZHENG Wen-Yin1, HE Xian-Fang2,*(), ZHU Yu-Lei1,*()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China
  • Received:2023-09-12 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-20
  • Contact: * E-mail: zhuyulei2011@126.com;E-mail: xianfanghe@126.com
  • Supported by:
    National Natural Science Foundation of China(31901540);Youth Backbone Teachers Overseas Academic Training Program(202008775003);Key Research and Development Plan of Anhui Province(202104f06020023)

Abstract:

To meet people's demand for wheat quality, exploring relevant candidate genes can provide a theoretical basis for genetic improvement and molecular marker-assisted selection of high-quality wheat cultivars. In this study, phenotypic values of eight wheat grain quality traits, including water absorption, grain protein content, volume weight, wet gluten content, dough stability time, dough development time, sedimentation value, and flour yield, were detected in 118 wheat genotypes in three environments. The genotypes were analyzed using 55K SNP arrays, and a genome-wide association study was conducted using the Q+K mixed model. In three different environments, the eight grain quality traits had extensive variation, the maximum variation coefficient of sedimentation value was 16.47%-17.03%, and the heritability of each quality trait was 0.71-0.85. The 118 wheat genotypes were divided into three subgroups: subgroup I, consisting of 41 (34.75%) genotypes, mainly from Anhui; subgroup II, consisting of 32 (27.12%) genotypes, predominantly from Anhui, Jiangsu, and Sichuan provinces; and subgroup III, consisting of 45 (38.13%) genotypes, mainly from Anhui and Jiangsu provinces. 22 stable loci significantly associated with wheat grain quality traits (P < 0.001) were repeatedly detected in two or three environments, distributed on chromosomes 1B (4), 1D (1), 2B (1), 2D (1), 3B (2), 3D (1), 4D (1), 5A (1), 5B (1), 5D (3), 6B (2), 7B (3), and 7D (1), explaining 8.53% to 16.32% of the phenotypic variation. Among the stable loci, three exhibited significant pleiotropic effects, 14 were identified as novel loci for controlling wheat quality traits, and 11 candidate genes possibly associated with wheat grain quality traits were screened. The higher the number of favorable alleles, the higher the phenotypic values of quality traits. Furthermore, it was discovered that several genotypes carried favorable alleles for all eight major quality traits. Among them, the wheat cultivars Huacheng 859 and Jimai 44 contained the highest number of favorable alleles, making them valuable breeding parents for improving wheat quality. The results of this study provide a theoretical basis, parental materials, and molecular markers for the breeding of high-quality wheat.

Key words: Triticum aestivum L., quality traits, genome-wide association study, 55K array, favorable alleles

Table 1

Statistical analysis of quality indexes in 118 wheat genotypes"

性状
Trait
环境
Environment
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
吸水率WA (%) E1 60.60 69.27 65.38 1.74 2.66
E2 61.03 68.57 65.43 1.63 2.49
E3 57.77 67.70 64.03 1.66 2.59
平均值Mean 61.17 68.04 64.95 1.47 2.26
BLUP 61.77 67.56 64.95 1.23 1.90
蛋白质含量GPC (%) E1 11.34 18.62 13.97 1.29 9.20
E2 11.52 18.74 14.02 1.40 9.96
E3 11.38 18.76 14.36 1.34 9.31
平均值Mean 11.88 17.37 14.12 1.08 7.65
BLUP 12.53 16.44 14.13 0.77 5.44
容重VW (g L-1) E1 771.67 821.67 802.94 10.26 1.28
E2 775.33 824.00 802.23 9.79 1.22
E3 755.67 818.33 790.61 12.61 1.60
平均值Mean 776.44 816.11 798.60 8.89 1.11
BLUP 782.89 810.84 798.50 6.27 0.78
湿面筋含量WGC (%) E1 25.59 39.98 30.78 2.55 8.28
E2 25.43 37.09 30.83 2.65 8.59
E3 26.09 40.33 31.67 2.62 8.27
平均值Mean 26.69 35.64 31.09 2.07 6.67
BLUP 28.06 34.27 31.12 1.44 4.63
面团稳定时间DST (min) E1 6.30 11.93 8.81 1.06 11.99
E2 5.40 11.20 8.86 1.10 12.42
E3 6.13 12.20 9.09 1.13 12.47
平均值Mean 6.43 11.42 8.92 0.95 10.62
BLUP 6.90 10.96 8.93 0.77 8.63
面团形成时间DDT (min) E1 2.87 5.40 3.98 0.49 12.40
E2 2.97 5.30 4.05 0.54 13.36
E3 2.87 5.13 3.95 0.45 11.40
平均值Mean 3.23 4.92 3.99 0.41 10.16
BLUP 3.43 4.69 4.00 0.30 7.59
沉降值SV (mL) E1 18.20 39.97 27.60 4.70 17.03
E2 17.57 42.67 29.13 5.15 17.69
E3 21.57 46.77 31.24 5.15 16.47
平均值Mean 21.10 40.14 29.32 4.13 14.10
BLUP 23.17 37.52 29.36 3.12 10.61
出粉率FY (%) E1 60.73 68.23 64.47 1.56 2.42
E2 61.10 68.73 64.52 1.39 2.15
E3 59.27 67.23 63.08 1.73 2.74
平均值Mean 61.12 67.16 64.02 1.27 1.99
BLUP 61.90 66.26 63.99 0.92 1.44

Table 2

Analysis of variance for eight quality traits in 118 wheat genotypes"

性状Trait 基因型Genotype (G) 环境Environment (E) 基因×环境G×E 遗传力h2
吸水率WA 755.15*** 148.94*** 230.34*** 0.85
蛋白质含量GPC 409.43*** 10.30*** 221.66*** 0.73
容重VW 27,756.82*** 11,309.32*** 14,384.27*** 0.74
湿面筋含量WGC 1509.86*** 59.44*** 874.64*** 0.71
面团稳定时间DST 315.00*** 5.37*** 108.16*** 0.83
面团形成时间DDT 57.76*** 0.72*** 28.66*** 0.75
沉降值SV 5998.01*** 787.16*** 2792.60*** 0.77
出粉率FY 568.39*** 156.04*** 290.40*** 0.74

Fig. 1

Correlation analysis and distribution histogram of eight quality traits in 118 wheat genotypes ***: P < 0.001. WA: water absorption; GPC: grain protein content; VW: volume weight; WGC: wet gluten content; DST: dough stability time; DDT: dough development time; SV: sedimentation value; FY: flour yield."

Fig. 2

Population structure analysis and LD attenuation plot in 118 wheat genotypes"

Fig. 3

Manhattan plot of BLUP for the main quality traits of 118 wheat genotypes The dashed line indicates the threshold -log10(P) is 3.00; The site above the dashed line represents the significant site."

Table 3

Significantly associated SNP loci for eight quality traits in 118 wheat genotypes"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
P
P-value
表型贡献率
R2 (%)
环境
Environment
先前已报道位点
Previously reported QTL
WA AX-111041836 1B 476.88 9.02E-04-9.37E-04 13.28-14.10 E1/E3/Mean QLGSC.cau-1B[11]
AX-110620539 3B 488.53-491.73 3.41E-04-8.85E-04 9.02-11.97 E1/E3/Mean
GPC AX-111049977 4D 486.54-489.74 1.48E-04-8.08E-04 8.87-11.79 E1/E3/Mean/BLUP
AX-110476332 5D 6.39 7.59E-04-9.61E-04 9.06-11.21 E1/E3/Mean QNWA.cau-5D[11]
AX-110071501 6B 172.73 9.04E-04-9.48E-04 12.45-13.10 E1/E3
AX-108729524 6B 615.98 8.81E-04-9.28E-04 12.36-12.70 E1/E3 qSV6B.1[25]
AX-95253477 7B 609.78-611.62 2.32E-04-7.52E-04 9.36-15.83 E2/E3/Mean/BLUP qHA7B.2[25]
VW AX-109484985 1B 535.59-536.59 1.79E-04-9.96E-04 8.53-12.86 E1/E3/Mean/BLUP
AX-108887454 3D 590.04 4.71E-04-6.35E-04 11.46-13.93 E1/E3/Mean
AX-111573142 5A 663.29 4.54E-04-9.49E-04 8.65-10.81 E1/E3/Mean AX-95112961[26]
WGC AX-111049977 4D 486.54-489.74 1.85E-04-9.84E-04 9.00-14.33 E1/E3/Mean/BLUP
AX-110132720 5D 227.32 4.68E-04-9.95E-04 11.64-14.72 E1/E3
DST AX-111007062 2B 201.24-209.08 2.67E-04-9.47E-04 9.17-15.37 E1/E3/Mean/BLUP
AX-110940091 2D 143.48-145.67 1.87E-04-9.92E-04 11.31-16.32 E1/E3/Mean/BLUP
AX-111505579 5D 53.19-59.29 1.61E-04-9.49E-04 12.15-13.99 E1/E2/E3/Mean/BLUP
AX-111760043 7B 628.83-634.86 8.17E-05-9.88E-04 8.88-14.90 E1/E3/Mean/BLUP qHA7B.2[25]
DDT AX-111472988 5B 544.40 9.27E-04-9.88E-04 9.80-10.65 E1/E3/Mean
AX-111760043 7B 628.83-634.86 2.70E-04-9.30E-04 9.02-15.91 E1/E3/Mean/BLUP qHA7B.2[25]
AX-110040847 7B 741.32-741.40 9.67E-04-9.87E-04 11.45-13.22 E1/E2/E3/Mean
SV AX-110101967 1B 622.47 1.27E-04-7.49E-04 13.42-16.76 E1/E3/Mean/BLUP AX-110369038[18]
AX-95253477 7B 609.78-611.62 1.51E-04-9.35E-04 9.83-15.14 E2/E3/BLUP qHA7B.2[25]
SV AX-94657532 7D 562.12 1.51E-04-9.35E-04 9.83-13.93 E2/E3/BLUP AX-108974357[18]
FY AX-109414218 1B 676.09-676.46 1.80E-04-8.17E-04 9.32-12.46 E1/E3
AX-109346236 1D 485.11-485.55 3.24E-04-8.61E-04 9.18-10.72 E1/E3/BLUP AX-94935157[18]
AX-110524075 3B 68.87 3.07E-04-4.28E-04 10.79-11.30 E1/E3/BLUP

Table 4

Selection of stable sites and information of candidate genes"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
WA AX-111041836 1B 476.88 TraesCS1B01G269100 谷胱甘肽S-转移酶
Glutathione S-transferase
GPC AX-110476332 5D 6.39 TraesCS5D01G009100 细胞色素b6
Cytochrome b6
AX-110071501 6B 172.73 TraesCS6B01G162500 F-box家族蛋白
F-box family protein
AX-108729524 6B 615.98 TraesCS6B01G347600 脂转移蛋白
Lipid transfer protein
VW AX-111573142 5A 663.29 TraesCS5A01G492000 非特异性丝氨酸/苏氨酸蛋白激酶
Non-specific serine/threonine protein kinase
DST AX-111007062 2B 201.24-209.08 TraesCS2B01G215800 富含甘氨酸蛋白
Glycine-rich protein
DDT AX-110040847 7B 741.32-741.40 TraesCS7B01G484400 赤霉素调节蛋白2, 推定
Gibberellin-regulated protein 2, putative
FY AX-109414218 1B 676.09-676.46 TraesCS1B01G459700 氨基酸转运蛋白家族蛋白
Amino acid transporter family protein
DST, DDT AX-111760043 7B 628.83-634.86 TraesCS7B01G365300 NAC结构域蛋白
NAC domain protein
GPC, WGC AX-111049977 4D 486.54-489.74 TraesCS4D01G325200 蛋白激酶家族蛋白, 推定, 表达
Protein kinase family protein, putative, expressed
GPC, SV AX-95253477 7B 609.78-611.62 TraesCS7B01G353100 过氧化物酶
Peroxidase

Fig. 4

Relationship between the number of favorable alleles based on significantly associated loci and phenotypic values in 118 wheat genotypes ***: P < 0.001. WA: water absorption; GPC: grain protein content; VW: volume weight; WGC: wet gluten content; DST: dough stability time; DDT: dough development time; SV: sedimentation value; FY: flour yield."

Table 5

Favorable allelic variation, phenotypic effect, and representative carrier genotypes of significantly associated loci"

性状
Trait
等位变异
Allele
优异带型
Excellent
belt type
表型效应Phenotypic effect 材料数
No. of
genotypes
典型载体
Typical carrier
E1 E2 E3
WA AX-111041836 C 0.85 0.76 0.32 78 济麦44, 郑7698
Jimai 44, Zheng 7698
AX-110620539 T 0.88 0.74 0.67 70
GPC AX-111049977 C 0.47 -0.02 0.10 90 扬辐麦6号, 皖麦606
Yangfumai 6, Wanmai 606
AX-110476332 T 0.74 0.8 0.39 29
AX-110071501 A 0.36 0.42 0.31 105
AX-108729524 A 0.01 0.07 -0.04 101
AX-95253477 T 0.28 -0.04 0.24 55
VW AX-109484985 C 9.65 7.67 5.69 21 乐麦207 Lemai 207, 18B187, 18B248
AX-108887454 G 7.78 6.93 4.29 88
AX-111573142 T 4.05 4.90 5.19 63
WGC AX-111049977 G 1.51 1.55 1.51 103 皖麦606, 华成859, 扬辐麦6号
Wanmai 606, Huacheng 859, Yangfumai 6
AX-110132720 G 1.32 1.85 0.71 59
DST AX-111007062 G 0.42 0.40 0.52 44 烟农19, 华成859, 济麦44
Yannong 19, Huacheng 859, Jimai 44
AX-110940091 A 0.52 0.53 0.57 49
AX-111505579 G 0.47 0.70 0.58 54
AX-111760043 T 0.31 0.36 0.46 52
DDT AX-111472988 C 0.33 0.42 0.14 32 华成859 Huacheng 859,
F06-4198
AX-111760043 G 0.19 0.22 0.17 54
AX-110040847 T 0.27 0.32 0.34 30
SV AX-110101967 G 3.57 2.63 1.90 37 亿麦9号 Yimai 9, 2011
AX-95253477 T 1.85 1.72 2.12 70
AX-94657532 T 1.85 1.72 2.12 70
FY AX-109414218 G 1.24 1.16 0.99 17 2011, 浩麦1号 Haomai 1
AX-109346236 A 0.82 0.82 0.64 20
AX-110524075 T 0.85 0.74 0.34 58
[1] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[2] Guzman C, Peña R J, Singh R, Autrique E, Dreisigacker S, Crossa J, Rutkoski J, Poland J, Battenfield S. Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl Translat Genom, 2016, 11: 3-8.
[3] Muqaddasi Q H, Brassac J, Ebmeyer E, Kollers S, Korzun V, Argillier O, Stiewe G, Plieske J, Ganal M W, Röder M S. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci Rep, 2020, 10: 1-17.
[4] Shewry P R, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci, 2015, 65: 236-243.
[5] 赵俊杰. 小麦52个产量、品质、抗性和适应性基因的育种选择研究. 中国农业科学院硕士学位论文, 北京, 2018.
Zhao J J. Breeding Selection on 52 Genes Controlling Yield, Quality, Stress Resistance and Adaptation in Bread Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[6] Yang Y, Chai Y, Zhang X, Lu S, Zhao Z, Wei D, Chen L, Hu Y G. Multi-locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci, 2020, 11: 1091.
doi: 10.3389/fpls.2020.01091 pmid: 32849679
[7] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
[8] 杨豪, 向仕华, 刘丽, 杨雪, 舒英杰, 何庆元. 川渝大豆生育期性状的全基因组关联分析. 作物学报, 2023, 49: 2727-2742.
Yang H, Xiang S H, Liu L, Yang X, Shu Y J, He Q Y. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing. Acta Agron Sin, 2023, 49: 2727-2742 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24210
[9] Kumar A, Mantovani E E, Simsek S, Jain S L, Elias E M, Mergoum M. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS One, 2019, 14: e0221826.
[10] Chen J H, Zhang F Y, Zhao C J, Lv G G, Sun C W, Pan Y B, Guo X Y, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J, 2019, 17: 2106-2122.
[11] Lou H Y, Zhang R Q, Liu Y T, Guo D D, Zhai S S, Chen A Y, Zhang Y F, Xie C J, You M S, Peng H R, Liang R Q, Ni Z F, Sun Q X, Li B Y. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theor Appl Genet, 2021, 134: 399-418.
[12] Gao L, Meng C S, Yi T F, Xu K, Cao H W, Zhang S H, Yang X J, Zhao Y. Genome-wide association study reveals the genetic basis of yield-and quality-related traits in wheat. BMC Plant Biol, 2021, 21: 144.
doi: 10.1186/s12870-021-02925-7 pmid: 33740889
[13] Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet, 2018, 131: 2439-2450.
[14] Ren T H, Hu Y S, Tang Y Z, Li C S, Yan B J, Ren Z L, Tan F Q, Tang Z X, Fu S L, Li Z. Utilization of a wheat 55K SNP array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci, 2018, 9: 333.
[15] Wu J H, Huang S, Zeng Q D, Liu S J, Wang Q L, Mu J M, Yu S Z, Han D J, Kang Z S. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor Appl Genet, 2018, 131: 1777-1792.
doi: 10.1007/s00122-018-3113-7 pmid: 29909527
[16] Mo Z Q, Zhu J, Wei J T, Zhou J G, Xu Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Li W, Wei Y M, Zheng Y L, Lan X J, Ma J. The 55K SNP-based exploration of QTLs for spikelet number per spike in a tetraploid wheat (Triticum turgidum L.) population: Chinese landrace “Ailanmai” × wild emmer. Front Plant Sci, 2021, 12: 732837.
[17] Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Liu L X. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Front Plant Sci, 2021, 12: 628478.
[18] 严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54: 4033-4047.
doi: 10.3864/j.issn.0578-1752.2021.19.001
Yan Y L, Shi X L, Zhang J B, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain quality related characteristics of spring wheat. Sci Agric Sin, 2021, 54: 4033-4047 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.19.001
[19] 赵春. 不同生态条件下小麦籽粒品质形成及其生理基础. 山东农业大学, 山东泰安, 2006.
Zhao C. Effects of Ecological Condition on Grain Quality Formation in Winter Wheat and Its Physiological Basis. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2006 (in Chinese with English abstract).
[20] 董一帆, 任毅, 程宇坤, 王睿, 张志辉, 时晓磊, 耿洪伟. 冬小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2023, 56: 2047-2063.
doi: 10.3864/j.issn.0578-1752.2023.11.002
Dong Y F, Ren Y, Cheng Y K, Wang R, Zhang Z H, Shi X L, Geng H W. Genome-wide association traits in winter wheat study of grain main quality related. Sci Agric Sin, 2023, 56: 2047-2063 (in Chinese with English abstract).
[21] Yu J M, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[22] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01078
[23] 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍. 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014, 40: 1725-1732.
doi: 10.3724/SP.J.1006.2014.01725
Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P. Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin, 2014, 40: 1725-1732 (in Chinese with English abstract).
[24] Gao Y T, Xu X R, Jin J J, Duan S N, Zhen W C, Xie C J, Ma J. Dissecting the genetic basis of grain morphology traits in Chinese wheat by genome wide association study. Euphytica, 2021, 217: 1-12.
[25] Hao S Y, Lou H Y, Wang H W, Shi J H, Liu D, Baogerile, Tao J G, Miao S M, Pei Q C, Yu L L, Wu M, Gao M, Zhao N H, Dong J C, You M S, Xin M M. Genome-wide association study reveals the genetic basis of five quality traits in Chinese wheat. Front Plant Sci, 2022, 13: 835306.
[26] 翟俊鹏. 普通小麦主要农艺性状和品质性状的全基因组关联分析. 河南农业大学, 河南郑州, 2019.
Zhai J P. Genome-wide Association Study for Main Agronomic and Quality Traits in Common Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[27] 张红梅, 熊雅文, 许文静, 张威, 王琼, 刘晓庆, 刘慧, 崔晓艳, 陈新, 陈华涛. 大豆R6期籽粒氨基酸含量的全基因组关联分析. 作物学报, 2023, 49: 3277-3288.
doi: 10.3724/SP.J.1006.2023.34031
Zhang H M, Xiong Y W, Xu W J, Zhang W, Wang Q, Liu X Q, Liu H, Cui X Y, Chen X, Chen H T. Genome-wide association study for amino acid content at R6 stage in soybean (Glycine max L.) seed. Acta Agron Sin, 2023, 49: 3277-3288 (in Chinese with English abstract).
[28] 张芳, 任毅, 曹俊梅, 李法计, 夏先春, 耿洪伟. 基于SNP标记的小麦籽粒性状全基因组关联分析. 中国农业科学, 2021, 54: 2053-2064.
doi: 10.3864/j.issn.0578-1752.2021.10.002
Zhang F, Ren Y, Cao J M, Li F J, Xia X C, Geng H W. Genome-wide association analysis of wheat grain size related traits based on SNP markers. Sci Agric Sin, 2021, 54: 2053-2064 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.10.002
[29] 吴新元, 芦静, 张新忠, 黄天荣, 李建疆, 周安定, 梁晓东, 曹俊梅, 高永红, 曾潮武. 新疆小麦品质生态区划研究. 新疆农业科学, 2017, 54: 1373-1383.
doi: 10.6048/j.issn.1001-4330.2017.08.001
Wu X Y, Lu J, Zhang X Z, Huang T R, Li J J, Zhou A D, Liang X D, Cao J M, Gao Y H, Zeng C W. Study of ecological division for wheat quality in Xinjiang. Xinjiang Agric Sci, 2017, 54: 1373-1383 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2017.08.001
[30] Frova C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol Plant, 2003, 119: 469-479.
[31] George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167: 311-318.
[32] 付爱根, 赵锋锋, 王娟, 郝亚琦. 植物叶绿体细胞色素b6f复合体的研究进展. 山地农业生物学报, 2015, 34: 1-9.
Fu A G, Zhao F F, Wang J, Hao Y Q. Research progress of plant chloroplast cytochrome b6f complex. J Mountain Agric Biol, 2015, 34: 1-9 (in Chinese with English abstract).
[33] Diao P F, Chen C, Zhang Y Z, Meng Q W, Lv W, Ma N N. The role of NAC transcription factor in plant cold response. Plant Signal Behav, 2020, 15: 1785668.
[34] 马雪祺, 阴艳红, 冯婧娴, 陈万生, 孙连娜, 肖莹. 植物NAC转录因子研究进展. 植物生理学报, 2021, 57: 2225-2234.
Ma X Q, Yin Y H, Feng J X, Chen W S, Sun L N, Xiao Y. Research progress of NAC transcription factors in plant. Plant Physiol J, 2021, 57: 2225-2234 (in Chinese with English abstract).
[35] 贾琪, 孙松, 孙天昊, 林文雄. F-box蛋白家族在植物抗逆响应中的作用机制. 中国生态农业学报, 2018, 26: 1125-1136.
Jia Q, Sun S, Sun T H, Lin W X. Mechanism of F-box protein family in plant resistance response to environmental stress. Chin J Eco-Agric, 2018, 26: 1125-1136 (in Chinese with English abstract).
[36] Buhot N, Douliez J P, Jacquemard A, Marion D, Tran V, Maume B F, Milat M L, Ponchet M, Mikès V, Kader J C, Blein J P. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett, 2001, 509: 27-30.
doi: 10.1016/s0014-5793(01)03116-7 pmid: 11734200
[37] Hemalatha M S, Manu B T, Bhagwat S G, Leelavathi K, Prasada Rao U J S. Protein characteristics and peroxidase activities of different Indian wheat varieties and their relationship to chapati-making quality. Eur Food Res Technol, 2007, 225: 463-471.
[38] 胡瑞波, 田纪春. 小麦主要品质性状与面粉色泽的关系. 麦类作物学报, 2006, 26: 96-101.
Hu R B, Tian J C. Relationship between main quality characteristics and wheat flour color. J Triticeae Crops, 2006, 26: 96-101 (in Chinese with English abstract).
[39] 胡新中, 卢为利, 阮侦区, 罗勤贵, 郑建梅, 欧阳韶晖, 张国权. 影响小麦面粉白度的品质指标分析. 中国农业科学, 2007, 40: 1142-1149.
Hu X Z, Lu W L, Ruan Z Q, Luo Q G, Zheng J M, Ou-Yang S H, Zhang G Q. Analysis of the quality indices affecting wheat flour whiteness. Sci Agric Sin, 2007, 40: 1142-1149 (in Chinese with English abstract).
[1] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[2] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[3] ZHANG Li-Lan, YANG Jun, WANG Rang-Jian. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants [J]. Acta Agronomica Sinica, 2024, 50(4): 871-886.
[4] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[5] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[6] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[7] MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572.
[8] ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183.
[9] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[10] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[11] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[12] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[13] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[14] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[15] XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .