Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2187-2206.doi: 10.3724/SP.J.1006.2024.31076

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome sequencing and genome-wide association study of wheat stem traits

YU Hai-Long1**(), WU Wen-Xue1**(), PEI Xing-Xu1, LIU Xiao-Yu1, DENG Gen-Wang2, LI Xi-Chen2, ZHEN Shi-Cong3, WANG Jun-Sen3, ZHAO Yong-Tao3, XU Hai-Xia1, CHENG Xi-Yong1, ZHAN Ke-Hui1,*()   

  1. 1Agronomy College of Henan Agricultural University, Zhengzhou 450046, Henan, China
    2Henan Huaguan Seed Industry Co., Ltd., Luyi 477200, Henan, China
    3Luohe Academy of Agricultural Sciences, Luohe 46200, Henan, China
  • Received:2023-12-01 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-04
  • Contact: *E-mail: kh486@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Key Research and Development Program of Henan Province in 2023(231111110700);Major Science and Technology Program of Henan Province in 2022(221100110300)

Abstract:

Stem traits in wheat are closely associated with lodging, and the identification of significantly linked gene loci and candidate genes provides a foundation for analyzing the genetic mechanism and molecular marker-assisted breeding of wheat stem traits. In this study, a panel of 192 wheat varieties from the southern Huang-Huai region was utilized to assess 14 stem traits across seven mature stage environments and four mid-filling stage environments. Genome-wide association analysis (GWAS) was conducted using wheat 660K SNP chips, and the differentially expressed genes related to the strength and diameter of the first two basal internodes were analyzed through RNA-seq. The results revealed a substantial difference between the mature stage and the mid-filling stage for all traits. In comparison to the mid-filling stage, the height of the gravity center significantly increased during the mature stage, while the length of the second and third internodes at the base showed an increase, and the other traits exhibited a decrease. GWAS detected a total of 163 stable SNPs (MTA), out of which 45 had gene or protein annotations. Combining GWAS and transcriptome analysis, three candidate genes associated with wheat stem traits were identified. The candidate gene TraesCS5A02G522100 may regulate photosynthesis by synthesizing isoglutaric acid compounds, thereby enhancing cell membrane stability and permeability through sterol production. This regulation, in turn, promotes stem development and improves stem characteristics. The candidate gene TraesCS1D02G390600 is directly involved in cell division and organ formation in the wheat stem, resulting in thicker and fuller stems. The candidate gene TraesCS7A02G481800 plays a role in cell-to-cell signaling, regulation of stem development, and stress response. The expression trends of these candidate genes were consistent with the results of transcriptome sequencing, as validated by qRT-PCR.

Key words: wheat, stem trait, transcriptome sequencing, genome-wide association study, southern Huang-Huai region

Table S1

Wheat varieties used in this study"

序号
Serial number
品种
Variety
省份
Province
序号
Serial number
品种
Variety
省份
Province
1 矮丰3号 Aifeng 3 陕西Shaanxi 97 兰考矮早8 Lankaoaizao 8 河南 Henan
2 百农3217 Bainong 3217 河南Henan 98 漯麦4号 Luomai 4 河南 Henan
3 豫麦4号 Yumai 4 河南 Henan 99 郑农17 Zhengnong 17 河南 Henan
4 豫麦18 Yumai 18 河南 Henan 100 洛旱3号 Luohan 3 河南 Henan
5 陕农7859 Shaannong 7859 陕西 Shaanxi 101 濮麦9号 Pumai 9 河南 Henan
6 周麦9号 Zhoumai 9 河南 Henan 102 新麦18 Xinmai 18 河南 Henan
7 兰考86 (79) Lankao 86 (79) 河南 Henan 103 郑麦004 Zhengmai 004 河南 Henan
8 豫麦34 Yumai34 河南 Henan 104 泛麦5号 Fanmai 5 河南 Henan
9 郑优6号Zhengyou 6 河南 Henan 105 西农889 Xinong 889 陕西 Shaanxi
10 陕160 Shaan 160 陕西 Shaanxi 106 小偃81 Xiaoyan 81 北京 Beijing
11 周8425B Zhou 8425B 河南 Henan 107 新麦208 Xinmai 208 河南 Henan
12 新麦9号 Xinmai 9 河南 Henan 108 郑麦366 Zhengmai 366 河南 Henan
13 蒿城8901 Gaocheng 8901 河北 Hebei 109 衡观35 Hengguan 35 河北 Hebei
14 小偃22 Xiaoyan 22 陕西 Shaanxi 110 开麦18 Kaimai 18 河南 Henan
15 豫麦49 Yumai 49 河南 Henan 111 洛麦21 Luomai 21 河南 Henan
16 豫麦51 Yumai 51 河南 Henan 112 濮麦10号 Pumai 10 河南 Henan
17 郑旱 1号 Zhenghan 1 河南 Henan 113 豫农201 Yunong 201 河南 Henan
18 内乡188 Neixiang 188 河南 Henan 114 源育3号 Yuanyu 3 河南 Henan
19 济旱2号 Jihan 2 山东 Shandong 115 百农160 Bainong 160 河南 Henan
20 石4185 Shi 4185 河北 Hebei 116 漯麦8号 Luomai 8 河南 Henan
21 烟农19 Yannong 19 山东 Shandong 117 新麦20 Xinmai 20 河南 Henan
22 郑麦9023 Zhengmai 9023 河南 Henan 118 泛麦11 Fanmai 11 河南 Henan
23 安麦8号 Anmai 8 河南 Henan 119 西农9871 Xinong 9871 陕西 Shaanxi
24 邯6172 Han 6172 河北 Hebei 120 周麦23 Zhoumai 23 河南 Henan
25 周麦16 Zhoumai 16 河南 Henan 121 豫农416 Yunong 416 河南 Henan
26 济麦20 Jimai 20 山东 Shandong 122 豫农982 Yunong 982 河南 Henan
27 太空6号 Taikong 6 河南 Henan 123 兰考198 Lankao 198 河南 Henan
28 偃展4110 Yanzhan 4110 河南 Henan 124 新旱1号 Xinhan 1 河南 Henan
29 豫农9901 Yunong 9901 河南 Henan 125 烟99102 Yan 99102 山东 Shandong
30 众麦1号 Zhongmai 1 河南 Henan 126 亿麦6号 Yimai 6 河南 Henan
31 周麦18 Zhoumai 18 河南 Henan 127 豫教5号 Yujiao 5 河南 Henan
32 周麦19 Zhoumai 19 河南 Henan 128 豫农4023 Yunong 4023 河南 Henan
33 矮抗58 Aikang 58 河南 Henan 129 漯麦18 Luomai 18 河南 Henan
34 豫农949 Yunong 949 河南 Henan 130 郑麦0856 Zhengmai 0856 河南 Henan
35 04中36 04 Zhong 36 河南 Henan 131 郑麦583 Zhengmai 583 河南 Henan
36 鹤麦1号 Hemai 1 河南 Henan 132 周麦26 Zhoumai 26 河南 Henan
37 济麦22 Jimai 22 山东 Shandong 133 百农207 Bainong 207 河南 Henan
38 洛旱6号 Luohan 6 河南 Henan 134 洛麦24 Luomai 24 河南 Henan
39 平安3号 Pingan 3 河南 Henan 135 西农529 Xinong 529 陕西 Shaanxi
40 平安6号 Pingan 6 河南 Henan 136 郑麦101 Zhengmai 101 河南 Henan
41 新麦19 Xinmai 19 河南 Henan 137 博农6号 Bonong 6 河南 Henan
42 偃佃9433 Yandian 9433 河南 Henan 138 存麦5号 Fengdecunmai 5 河南 Henan
43 郑麦9694 Zhengmai 9694 河南 Henan 139 存麦8号 Fengdecunmai 8 河南 Henan
44 豫农202 Yunong 202 河南 Henan 140 华育198 Huayu 198 河南 Henan
45 郑育麦9987 Zhengyumai 9987 河南 Henan 141 淮麦0882 Huaimai 0882 江苏 Jiangsu
46 周麦22 Zhoumai 22 河南 Henan 142 洛麦05159 Luomai 05159 河南 Henan
47 洛新998 Luoxin 998 河南 Henan 143 漯6073 Luo 6073 河南 Henan
48 豫保1号 Yubao 1 河南 Henan 144 秋乐2122 Qiule 2122 河南 Henan
49 中育12 Zhongyu 12 河南 Henan 145 未来0818 Weilai 0818 安徽 Anhui
50 洛麦23 Luomai 23 河南 Henan 146 新0208 Xin 0208 河南 Henan
51 汝州0319 Ruzhou 0319 河南 Henan 147 豫农211 Yunong 211 河南 Henan
52 许科1号 Xuke 1 河南 Henan 148 中麦875 Zhongmai 875 北京 Beijing
53 汶农14 Wennong 14 山东 Shandong 149 中育9302 Zhongyu 9302 河南 Henan
54 新麦26 Xinmai 26 河南 Henan 150 中育9307 Zhongyu 9307 河南 Henan
55 存麦1号 Cunmai 1 河南 Henan 151 百农418 Bainong 418 河南 Henan
56 开麦21 Kaimai 21 河南 Henan 152 存麦11 Cunmai 11 河南 Henan
57 平安8号 Pingan 8 河南 Henan 153 泛麦7030 Fanmai 7030 河南 Henan
58 许科316 Xuke 316 河南 Henan 154 泛麦803 Fanmai 803 河南 Henan
59 郑麦7698 Zhengmai 7698 河南 Henan 155 怀川919 Huaichuan 919 河南 Henan
60 周麦27 Zhoumai 27 河南 Henan 156 黄明116 Huangming 116 河南 Henan
61 国麦301 Guomai 301 河南 Henan 157 俊达106 Junda 106 河南 Henan
62 农大1108 Nongda 1108 北京 Beijing 158 洛麦28 Luomai 28 河南 Henan
63 郑麦379 Zhengmai 379 河南 Henan 159 孟麦023 Mengmai 023 河南 Henan
64 周麦24 Zhoumai 24 河南 Henan 160 平安11 Pingan 11 河南 Henan
65 平安9号 Pingan 9 河南 Henan 161 濮麦053 Pumai 053 河南 Henan
66 许科415 Xuke 415 河南 Henan 162 商麦156 Shangmai 156 河南 Henan
67 郑麦103 Zhengmai 103 河南 Henan 163 泰禾麦1号 Taihemai 1 河南 Henan
68 郑育麦043 Zhengyumai 043 河南 Henan 164 亚麦 1号 Yamai 1 河南 Henan
69 存麦10号 Fengdecunmai 10 河南 Henan 165 偃科028 Yanke 028 河南 Henan
70 枣乡158 Zaoxiang 158 河南 Henan 166 偃麦864 Yanmai 864 河南 Henan
71 弘麦118 Hongmai 118 河南 Henan 167 郑麦113 Zhengmai 113 河南 Henan
72 华瑞00712 Huarui 00712 江苏 Jiangsu 168 LS6109 LS 6109 山东 Shandong
73 许麦1242 Xumai 1242 河南 Henan 169 存麦12号 Cunmai 12 河南 Henan
74 郑麦1023 Zhengmai 1023 河南 Henan 170 洛麦31 Luomai 31 河南 Henan
75 郑育麦0519 Zhengyumai 0519 河南 Henan 171 先麦13号 Xianyou 13 河南 Henan
76 小偃6号 Xiaoyan 6 陕西 Shaanxi 172 徐麦0054 Xumai 0054 江苏 Jiangsu
77 良星99 Liangxing 99 山东 Shandong 173 豫农186 Yunong 186 河南 Henan
78 师栾02-1 Shiluan 02-1 河北 Hebei 174 郑品麦8号 Zhengpinmai 8 河南 Henan
79 许科168 Xuke 168 河南 Henan 175 中研麦0708 Zhongyanmai 0708 江苏 Jiangsu
80 豫麦2号 Yumai 2 河南 Henan 176 周麦30 Zhoumai 30 河南 Henan
81 陕优225 Shaanyou 225 陕西 Shaanxi 177 FS059 河南 Henan
82 豫麦14优 Yumai 14 You 河南 Henan 178 国育101 Guoyu 101 河南 Henan
83 豫麦41 Yumai 41 河南 Henan 179 滑育麦118 Huayumai 118 河南 Henan
84 闫麦8911 Yanmai 8911 陕西 Shaanxi 180 济研麦7号 Jiyanmai 7 河南 Henan
85 豫麦47 Yumai 47 河南 Henan 181 浚9917 Jun 9917 河南 Henan
86 豫麦52 Yumai 52 河南 Henan 182 兰考182 Lankao 182 河南 Henan
87 豫麦54 Bainong 64 河南 Henan 183 轮选1298 Lunxuan 1298 河南 Henan
88 周麦13 Zhoumai 13 河南 Henan 184 漯10T07 Luo 10T07 河南 Henan
89 豫麦55 Yumai 55 河南 Henan 185 濮2056 Pu 2056 河南 Henan
90 豫麦58 Yumai 58 河南 Henan 186 瑞泉麦168 Ruiquanmai 168 江苏 Jiangsu
91 豫麦68 Yumai 68 河南 Henan 187 泰农8968 Tainong 8968 山东 Shandong
92 丰优6号 Fengyou 6 河南 Henan 188 囤丰802 Dongfeng 802 河南 Henan
93 淮麦19 Huaimai 19 江苏 Jiangsu 189 温0418 Wen 0418 河南 Henan
94 偃师16 Yanshi 16 河南 Henan 190 温粮1号 Wenliang 1 河南 Henan
95 济南17 Jinan 17 山东 Shandong 191 许科793 Xuke 793 河南 Henan
96 郑麦98 Zhengmai 98 河南 Henan 192 中创805 Zhongchuang 805 河南 Henan

Table 1

Fluorescence quantitative PCR primers for evaluating the reliability of transcriptomic data"

基因Gene 上游引物Forward primer (5'-3') 下游引物Reverse primer (5'-3')
TraesCS1D02G390600 AGCGAGACTCCCTCAAGA TGTCACGCAGTATGTCAACT
TraesCS5A02G522100 GCCATTTTCAATCGTCG GTCATACAGGGGCTTCG
TraesCS3B02G485000 ATCAGCCTTCTTGGTGC CTGGGTAGATTTTGTTTGC
TraesCS6B02G466600 CCTTGGGTTGCCAGATA AAGAGGGACGCTACTAAATT
TraesCS5B02G038600 CAGCATCCGTCGCAAAC CCCCATCCAAAGTCCGT
TraesCS1A02G422100 AGATGAAGGCGTTGAGTG ATGGACAGTGCCAAGGTA
内参基因β-actin GTGTCGCACCAGAGGATCAT CGCTGGCATACAAGGACAGA

Table 2

Phenotypic variation and joint analysis of variance for wheat stem traits"

性状
Trait
均值
Mean
范围
Range
变异
系数
CV (%)
PP-value 遗传力
hB2 (%)
环境间
Environment (E)
品种间
Variety (V)
品种×环境
V× E
株高ZG (cm) 81.31 58.67-128.35 9.69 0 0 2.02E-41 97.65
重心高度ZX (cm) 59.61 44.25-90.58 8.65 1.00E-298 0 2.55E-42 96.69
基部第一节间长度CD1 (cm) 6.48 2.45-14.85 25.31 1.50E-117 1.31E-51 2.97E-07 89.11
基部第二节间长度CD2 (cm) 9.37 5.09-23.04 16.76 3.72E-93 0 4.74E-40 86.15
基部第三节间长度CD3 (cm) 11.29 7.10-24.20 18.32 9.70E-126 0 2.06E-56 89.87
基部第一节间直径ZJ1 (mm) 4.09 2.68-5.79 10.67 8.50E-156 1.23E-50 1.72E-05 96.43
基部第二节间直径ZJ2 (mm) 4.35 3.10-5.96 9.14 8.50E-237 8.80E-154 9.98E-37 98.09
基部第三节间直径ZJ3 (mm) 4.39 3.08-5.90 9.35 3.50E-276 2.60E-148 1.03E-30 98.53
基部第一节间强度ZD1 (N) 12.10 4.33-35.59 29.67 3.10E-192 3.55E-55 5.17E-16 93.86
基部第二节间强度ZD2 (N) 8.90 2.43-22.57 26.16 1.70E-193 9.90E-103 2.27E-22 93.92
基部第三节间强度ZD3 (N) 8.25 2.95-28.35 27.92 3.20E-201 1.90E-133 3.34E-25 94.21
基部第一节间充实度CS1 (g cm-1) 2.20E-02 5.00E-03-4.40E-02 24.46 2.30E-09 1.00E-03 5.25E-08 63.27
基部第二节间充实度CS2 (g cm-1) 1.50E-02 5.00E-03-3.60E-02 22.94 4.08E-61 2.58E-12 5.74E-06 89.24
基部第三节间充实度CS3 (g cm-1) 1.30E-02 4.00E-03-3.20E-02 21.94 1.24E-15 5.87E-08 3.00E-03 65.22

Table 3

Differences in stem traits of wheat between the mid-filling stage and mature stages in Yuanyang"

性状
Trait
灌浆中期Mid-filling stage 成熟期Mature stage P
P-value
相关系数
Correlation coefficient
均值
Mean
范围
Range
变异系数
CV (%)
均值
Mean
范围
Range
变异系数
CV (%)
ZG (cm) 84.75 64.85-132.80 9.38 83.31 66.25-126.00 8.47 2.66E-118 0.96**
ZX (cm) 48.44 35.50-71.35 9.26 60.04 48.80-83.40 7.80 3.68E-70 0.91**
CD1 (cm) 6.98 2.89-15.13 22.50 6.97 2.60-14.85 23.48 2.60E-24 0.83**
CD2 (cm) 9.39 5.30-20.76 16.99 9.49 5.73-23.04 17.09 2.43E-27 0.94**
CD3 (cm) 11.20 6.59-24.40 19.15 11.33 7.16-24.20 19.16 1.71E-10 0.91**
ZJ1 (mm) 4.06 2.64-5.78 9.65 3.93 2.68-5.29 8.58 1.59E-56 0.83**
ZJ2 (mm) 4.31 3.02-5.65 8.19 4.20 3.23-5.50 8.07 7.26E-64 0.88**
ZJ3 (mm) 4.39 3.01-5.99 8.54 4.23 3.08-5.45 8.41 3.82E-53 0.86**
ZD1 (N) 13.52 5.87-33.96 26.86 11.01 5.44-23.06 27.56 5.58E-30 0.64**
ZD2 (N) 10.38 4.90-20.93 23.60 8.04 2.43-17.30 23.87 2.73E-37 0.71**
ZD3 (N) 9.36 3.95-21.77 24.14 7.60 2.95-18.46 27.82 1.15E-37 0.76**
CS1 (g cm-1) 2.60E-02 5.00E-03-5.40E-02 28.68 2.20E-02 5.00E-03-4.40E-02 25.23 2.00E-06 0.33**
CS2 (g cm-1) 2.10E-02 4.00E-03-4.70E-02 25.39 1.40E-02 5.00E-03-3.60E-02 22.43 5.62E-11 0.51**
CS3 (g cm-1) 2.00E-02 4.00E-03-4.30E-02 26.16 1.30E-02 6.00E-03-2.60E-02 20.60 1.31E-09 0.44**

Fig. 1

Correlation analysis between stem traits in wheat Abbreviations are the same as those given in Table 3. The color gradient from red to green indicate a correlation from negative to positive. r0.05 = 0.138, r0.01 = 0.181. The bottom-left of the figure corresponds to the mature stage, while the top-right represents the mid-filling stage."

Table 4

GWAS analysis results of mixed linear model (MLM (Q+K))"

性状
Trait
MTA数
MTA
稳定的MTA数
Stable MTA
稳定的位点数
Stable loci
log10 (P)范围
log10 (P) range
贡献率范围
Range for R2 (%)
ZG 345 30 8 4.00-7.18 4.30-19.46
ZX 280 29 9 4.00-7.20 6.72-15.95
CD1 218 4 3 4.00-5.07 8.66-11.82
CD2 241 5 4 4.00-5.50 8.59-12.94
CD3 784 43 11 4.00-7.16 7.33-13.39
ZJ1 187 13 7 4.00-5.35 4.27-12.85
ZJ2 168 14 8 4.00-5.82 5.45-16.31
ZJ3 241 9 6 4.00-5.95 5.86-10.54
ZD1 179 0 0 4.00-5.88 6.28-10.37
ZD2 172 5 2 4.00-5.25 5.35-8.36
ZD3 86 0 0 4.00-5.15 6.39-9.72
CS1 522 1 1 4.00-9.59 3.41-13.50
CS2 1198 10 8 4.00-12.91 6.64-11.81
CS3 169 0 0 4.01-6.29 6.32-17.63

Table 5

Candidate genes for wheat stem traits and their functional annotations"

性状
Trait
SNP 染色体
Chr.
位置
Position
基因
Gene
基因注释或编码蛋白
Gene annotation or coding proteins
ZJ1 AX-109898312 5B 476634277 TraesCS5B02G290700 Bin/amphiphysin/Rvs (BAR) domain
ZJ1 AX-109937796 1B 579938080 TraesCS1B02G349500 Casein kinase substrate phosphoprotein PP28
ZJ1 AX-111004440 1B 579937443 TraesCS1B02G349500 Casein kinase substrate phosphoprotein PP28
ZJ1 AX-108857434 1B 579938129 TraesCS1B02G349500 Casein kinase substrate phosphoprotein PP28
ZJ1 AX-111044868 1B 579001042 TraesCS1A02G335700 S-adenosylmethionine-dependent methyltransferases
ZJ1 AX-111044868 1B 579001042 TraesCS1A02G335700 Dimerization domain
ZJ1 AX-109056066 3B 244985330 TraesCS3B02G208800 Superfamily II DNA and RNA helicase
ZJ1 AX-109056066 3B 244985330 TraesCS3B02G208800 Protein of unknown function (DUF3615)
ZJ1 AX-94792426 7B 291529 TraesCS7B02G001300 DEUBAD domain found in nuclear factor related to kappa-B-binding protein (NFRKB) and similar proteins
ZJ2 AX-94619650 7A 12198370 TraesCS7D02G026300 Catalytic domain of the serine/threonine kinase, with no Lysine (WNK) kinase
ZJ2 AX-94619650 7A 12198370 TraesCS7D02G026300 Oxidative-stress-responsive kinase 1 C-terminal domain
ZJ2 AX-95136011 7A 5078210 TraesCS7D02G030200 The adenylation domain of non-ribosomal peptide synthetases (NRPS)
ZJ2 AX-109481330 6A 52789093 TraesCS7A02G069800 NB-ARC domain
ZJ2 AX-109022590 3A 10953753 TraesCS3A02G017100 Protein kinases, catalytic domain
ZJ2 AX-109342218 3A 10953642 TraesCS3A02G017100 Protein kinases, catalytic domain
ZJ2 AX-95136011 7A 5078210 TraesCS7D02G030200 Outer membrane protein assembly factor Bam B, contains PQQ-like beta-propeller repeat
ZJ2 AX-111678795 3A 10955264 TraesCS3A02G017100 Protein kinases, catalytic domain
ZJ3 AX-111557672 7A 674103879 TraesCS7A02G481800 Syntaxin
ZJ3 AX-111557672 7A 674103879 TraesCS7A02G481800 SNARE motif
CD1 AX-94610974 5B 6654327 TraesCS5B02G005100 Ubiquitin-conjugating enzyme
CD2 AX-86164054 3D 596915235 TraesCS3D02G512400 Aph-1 protein
CD2 AX-95684045 5A 656936217 TraesCS3D02G145000 WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor
CD2 AX-95252850 5B 712972538 TraesCS5B02G572600 ABC transporter G family member
CD2 AX-95252850 5B 712972538 TraesCS5B02G572600 Herpes virus major outer envelope glycoprotein (BLLF1)
CD2 AX-86164054 3D 596915235 TraesCS3A02G505100 Aph-1 protein
CD2 AX-94635034 6B 47860783 TraesCS6B02G071100 P-loop containing nucleoside triphosphate hydrolases
CD2 AX-94635034 6B 47860783 TraesCS6B02G071100 Chromosome segregation ATPase
CD3 AX-95654430 5D 562652154 TraesCS7B02G000400 MAEBL
CD3 AX-95654430 5D 562652154 TraesCS7B02G000400 Type III pyridoxal 5-phosphate (PLP)-dependent enzymes
CD3 AX-109357138 1A 577840649 TraesCS1A02G422100 Asparagine synthase
CD3 AX-86171374 5A 657181133 TraesCS5A02G486000 Pectinase
CD3 AX-94479513 5B 646672158 TraesCS5A02G486100 Calmodulin-binding protein like
CD3 AX-110417422 5A 656939720 TraesCS3A02G192500 Piezo non-specific cation channel, R-Ras-binding domain
CD3 AX-111518838 5A 682932836 TraesCS4D02G347500 Per1 family
CD3 AX-111518838 5A 682932836 TraesCS4B02G353500 Per1 family
CD3 AX-111594865 5A 683342266 TraesCS5A02G522100 Hydroxymethyl glutaryl-CoA synthase
CD3 AX-111594865 5A 683342266 TraesCS5A02G522100 The largest subunit (Rpb1) of eukaryotic RNA polymerase II (RNAP II), N-terminal domain
CD3 AX-111450784 1A 32769697 TraesCS5D02G498900 RNA polymerase Rpb1, domain 6
CD3 AX-111450784 1A 32769697 TraesCS5D02G498900 Herpes virus major outer envelope glycoprotein (BLLF1)
CD3 AX-111450784 1A 32769697 TraesCS5D02G498900 Transcriptional regulator ICP4
CD3 AX-111215929 3B 771392394 TraesCS3B02G530200 Plant-specific B3-DNA binding domain
CD3 AX-108956666 3B 771392207 TraesCS3B02G530200 Plant-specific B3-DNA binding domain
CD3 AX-111518838 5A 682932836 TraesCS5A02G521800 Per1-like family
CD3 AX-94516717 5B 662851468 TraesCS5B02G495000 Protein of unknown function (DUF1298)
CS1 AX-110994869 7B 6179850 TraesCS7A02G112000 2-oxoglutarate dehydrogenase E2 component
CS1 AX-110994869 7B 6179850 TraesCS5A02G521800 Per1 family
CS1 AX-94806548 5A 321932077 TraesCS5A02G146000 Pimeloyl-ACP methyl ester carboxylesterase
CS1 AX-110911707 5A 536985712 TraesCS5A02G327200 5'-3' exonuclease [replication, recombination and repair]
CS2 AX-110562242 4A 5813275 TraesCS4A02G009700 Transferase family
CS2 AX-111738737 5A 126641162 TraesCS5D02G103800 Arabidopsis aldehyde double bond reductase and leukotriene B4 12-hydroxydehydrogenase
CS2 AX-95174598 1D 462052343 TraesCS1D02G390600 Protein phosphatase 2A regulatory B subunit (B56 family)
CS2 AX-111463970 3B 513813668 TraesCS3B02G319000 ABC transporter G family member
ZD2 AX-94968843 7A 31875912 TraesCS7A02G063700 SPX domain of proteins found in plants and germ cells
ZD2 AX-94968843 7A 31875912 TraesCS7A02G063700 Major facilitator superfamily
ZG AX-94618164 5B 646668297 TraesCS5B02G473000 DNA polymerase III subunit gamma/tau
ZG AX-110978768 3B 771340138 TraesCS4B02G149600 Major facilitator superfamily
ZG AX-111664693 5D 528617621 TraesCS5D02G498900 Largest subunit (Rpb1) of eukaryotic RNA polymerase II (RNAP II)
ZG AX-111664693 5D 528617621 TraesCS5D02G498900 Largest subunit (Rpb1) of eukaryotic RNA polymerase II (RNAP II), N-terminal domain;
ZG AX-110610464 5A 656864665 TraesCS5D02G499000 RNA polymerase Rpb1, domain 6
ZG AX-110610464 5A 656864665 TraesCS5D02G499000 Herpes virus major outer envelope glycoprotein (BLLF1)
ZG AX-94989341 6B 30276993 TraesCS6B02G050900 Protein kinases, catalytic domain
ZG AX-94518282 1A 593287088 TraesCS1A02G445500 Arginine protein

Table 6

Comparison of differences in stem internode strength extremes among wheat varieties"

品种
Variety
灌浆中期Mid-filling stage 成熟期Mature stage
ZD1/N ZD2/N ZD1/N ZD2/N
LKAZ8 19.83±2.5 A 13.73±1.73 A 19.72±2.53 A 15.12±2.22 A
THM1 14.97±1.79 B 13.21±1.83 A 13.16±1.60 B 10.91±0.84 B
ZM18 15.69±2.08 B 11.06±1.38 B 13.74±1.80 B 9.73±1.13 BC
LM21 10.77±0.82 C 7.94±0.82 C 10.31±1.34 C 8.58±1.12 CD
JN17 10.50±1.64 C 7.68±0.97 C 9.02±1.37 C 7.36±1.28 DE
XY81 9.35±1.66 C 6.66±1.43 C 8.02±1.38 C 6.03±1.01 E

Table 7

Comparison of differences among wheat varieties with extreme internodal diameter at the base (mm)"

品种
Variety
灌浆中期Mid-filling stage 成熟期Mature stage
ZJ1 ZJ2 ZJ1 ZJ2
LKAZ8 5.44±0.17 A 5.44±0.10 A 5.43±0.28 A 5.50±0.23 A
PA6 4.04±0.15 BC 4.61±0.10 B 4.42±0.15 B 4.66±0.10 B
BN418 4.30±0.08 B 4.41±0.21 B 4.41±0.24 B 4.73±0.34 B
ZM26 3.35±0.11 D 4.01±0.07 C 3.75±0.16 C 3.95±0.16 C
JN17 3.87±0.16 C 3.50±0.15 D 3.44±0.16 D 3.58±0.16 D
XY81 3.35±0.13 D 3.50±0.15 D 3.38±0.16 D 3.53±0.14 D

Table S2

Quality statistics of sequencing data"

样品Sample Clean Reads Clean Bases (Gb) Clean Q20 (%) Clean Q30 (%)
JC-1 61398958 9.13 99.08 96.08
JC-2 71622432 10.64 99.15 96.39
JC-3 63550980 9.45 99.09 96.11
JQ-1 79999678 11.83 99.21 96.67
JQ-2 71797632 10.66 99.10 96.20
JQ-3 82731740 12.25 99.18 96.57
JR-1 72941814 10.83 99.15 96.38
JR-2 74865844 11.11 99.14 96.36
JR-3 65958148 9.80 99.12 96.28
JX-1 81739280 12.10 99.20 96.60
JX-2 69896536 10.37 99.13 96.31
JX-3 65331538 9.70 99.11 96.23
TJC-1 70710204 10.51 99.19 96.54
TJC-2 70541826 10.49 99.13 96.29
TJC-3 69786280 10.35 99.15 96.42
TJQ-1 83117982 12.32 99.18 96.59
TJQ-2 69221538 10.29 99.10 96.24
TJQ-3 81843308 12.15 99.15 96.43
TJR-1 67457962 10.03 99.10 96.17
TJR-2 67630680 10.05 99.10 96.22
TJR-3 77556940 11.51 99.19 96.57
TJX-1 64582230 9.67 98.92 95.40
TJX-2 72268944 10.82 98.98 95.73
TJX-3 56040790 8.39 98.90 95.26

Fig. 2

Statistical analysis of differentially expressed genes JR vs JQ: the comparison group of extreme weak and extreme strong basal internode strength; JX vs JC: the comparison group of extreme short and extreme long basal internode diameter; TJR vs TJQ: the comparison group of extreme weak and extreme strong basal internode strength; TJX vs TJC: the comparison group of extreme short and extreme long basal internode diameter."

Fig. 3

Venn diagram of differentially expressed genes in stem strength and diameter JR vs JQ: the comparison group of extreme weak and extreme strong basal internode strength; JX vs JC: the comparison group of extreme short and extreme long basal internode diameter; TJR vs TJQ: the comparison group of extreme weak and extreme strong basal internode strength; TJX vs TJC: the comparison group of extreme short and extreme long basal internode diameter."

Fig. 4

GO enrichment of differentially expressed genes in extreme varieties for ZD1 (JR vs JQ) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 5

GO enrichment of differentially expressed genes in extreme varieties for ZD2 (TJR vs TJQ) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 6

GO enrichment of differentially expressed genes in extreme varieties for ZJ1 (JX vs JC) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 7

GO enrichment of differentially expressed genes in extreme varieties for ZJ2 (TJX vs TJC) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 8

KEGG enrichment of differentially expressed genes in extreme varieties for ZD1 (JR vs JQ) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 9

KEGG enrichment of differential expression genes in extreme varieties for ZD2 (TJR vs TJQ) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 10

KEGG enrichment of differentially expressed genes in extreme varieties for ZJ1 (JX vs JC) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 11

KEGG enrichment of differentially expressed genes in extreme varieties for ZJ2 (TJX vs TJC) (up-regulated in the left figure and down-regulated in the right figure)"

Fig. 12

Cluster diagram of differential genes in phenylpropanoid biosynthesis pathway of extreme varieties for the strength of the first 2 internodes Left for JR vs JQ and right for TJR vs TJQ."

Fig. 13

Cluster diagram of differential genes in starch and sucrose metabolism pathways of extreme varieties for the strength of the first 2 internodes (left for JR vs JQ, middle for TJR vs TJQ) and ZJ1 (right for JX vs JC)"

Fig. 14

Comparison of qRT-PCR and transcriptome sequencing of candidate genes for transcriptome JR vs JQ JR vs JQ: the comparison group of extreme weak and extreme strong basal internode strength."

Fig. 15

Comparison of qRT-PCR and transcriptome sequencing of candidate genes in the transcriptome TJR vs TJQ TJR vs TJQ is the comparison group of extreme weak and extreme strong basal internode strength."

[1] 汪涛, 张毅, 赵晓雪, 陈璨, 司红起, 马传喜, 卢杰. 小麦抗倒伏茎秆形态指标及QTL分析. 华北农学报, 2023, 38(2): 99-105.
doi: 10.7668/hbnxb.20193602
Wang T, Zhang Y, Zhao X X, Chen C, Si H Q, Ma C X, Lu J. Morphological indexes and QTL analysis of stem lodging resistance in wheat. Acta Agric Boreali-Sin, 2023, 38(2): 99-105 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193602
[2] 刘先斌, 张道荣, 孙华卫, 周芳菊, 凌冬, 张鹏飞, 汤清益, 姜齐斌, 唐清. 鄂北地区小麦倒伏的原因分析及对策. 农业科技通讯, 2020, (2): 217-218.
Liu X B, Zhang D R, Sun H W, Zhou F J, Ling D, Zhang P F, Tang Q Y, Jiang Q B, Tang Q. Analysis and countermeasures of wheat lodging in the northern Hubei region. Agric Sci Technol Commun, 2020, (2): 217-218 (in Chinese with English abstract).
[3] Kelbert A J, Spaner D, Briggs K G, King J R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004, 136: 211-2214.
[4] Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2013, 157: 1-7.
[5] 董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报(自然科学版), 2003, (3): 188-191.
Dong Q, Wang A P, Liang S M. Study on the architectural characteristics of wheat stalks. J Shanxi Agric Univ (Nat Sci Edn), 2003, (3): 188-191 (in Chinese with English abstract).
[6] 李嘉豪, 刘昊东, 王伟伟, 徐渴, 张树华, 赵勇, 杨学举. 中国小麦主推品种和育成品系的抗倒伏性评价. 植物遗传资源学报, 2021, 22: 50-56.
doi: 10.13430/j.cnki.jpgr.20200310001
Li J H, Liu H D, Wang W W, Xu K, Zhang S H, Zhao Y, Yang X J. Evaluation of lodging resistance in main wheat varieties (lines) in China. J Plant Genet Resour, 2021, 22: 50-56 (in Chinese with English abstract).
[7] 徐磊, 王大伟, 时荣盛, 盛中飞, 李安飞. 小麦基部节间茎秆密度与抗倒性关系的研究. 麦类作物学报, 2009, 29: 673-679.
Xu L, Wang D W, Shi R S, Sheng Z F, Li A F. Relationship between lodging-resistance and the density of the bottom elongate stem in wheat. J Triticeae Crops, 2009, 29: 673-679 (in Chinese with English abstract).
[8] 郑孟静. 不同小麦品种抗倒性能差异的内在机制及其对氮密互作的调控响应. 山东农业大学博士学位论文, 山东泰安 2017.
Zheng M J. The Mechanism of Culm Lodging Resistance Difference in Wheat Varieties and Its Regulation Effects of Nitrogen and Density. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).
[9] 卢杰, 田胜明, 王胜, 陈璨, 司红起, 常成, 马传喜. 小麦茎秆强度关联位点及优异等位变异分析. 麦类作物学报, 2021, 41: 1347-1355.
Lu J, Tian S M, Wang S, Chen C, Si H Q, Chang C, Ma C X. Analysis of associated loci and elite alleles associated with stem strength in wheat. J Triticeae Crops, 2021, 41: 1347-1355 (in Chinese with English abstract).
[10] Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He Z. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol, 2014, 14: 128.
doi: 10.1186/1471-2229-14-128 pmid: 24884376
[11] 张雁明, 邢国芳, 刘美桃, 刘晓东, 韩渊怀. 全基因组关联分析: 基因组学研究的机遇与挑战. 生物技术通报, 2013, (6): 1-6.
Zhang Y M, Xing G F, Liu M T, Liu X D, Han Y H. Whole genome association analysis: opportunities and challenges in genomics research. Biotechnol Bull, 2013, (6): 1-6 (in Chinese with English abstract).
[12] 车卓, 王鹏, 田甜, 张沛沛, 陈涛, 刘媛, 杨德龙. 小麦株高全基因组关联分析与候选基因预测. 农业生物技术学报, 2024, 32: 259-272.
Che Z, Wang P, Tian T, Zhang P P, Chen T, Liu Y, Yang D L. Genomic association analysis and candidate gene prediction of wheat plant height. J Agric Biotechnol, 2024, 32: 259-272 (in Chinese with English abstract).
[13] Jung W J, Lee Y J, Kang C S, Yong W S. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC Plant Biol, 2021, 21: 418.
doi: 10.1186/s12870-021-03180-6 pmid: 34517837
[14] 王剑锋. 小麦茎秆强度相关位点鉴定及CAPS标记开发. 安徽农业大学硕士学位论文, 安徽合肥, 2022.
Wang J F. Identification of Wheat Stem Strength Related Loci and Development of CAPS Markers. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2022 (in Chinese with English abstract).
[15] 谢骏辉, 陈潇飞, 王国贵, 李蓉, 谭德俊, 马进, 唐霄, 朱云芬. 转录组测序技术的发展及其在畜禽养殖中的应用. 中国畜牧杂志, 2023, 59(10): 103-110.
Xie J H, Chen X F, Wang G G, Li R, Tan D J, Ma J, Tang X, Zhu Y F. Development of transcriptome sequencing technology and its application in animal husbandry. Chin J Animal Husb, 2023, 59(10): 103-110 (in Chinese with English abstract).
[16] 刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析. 核农学报, 2019, 33: 1451-1458.
doi: 10.11869/j.issn.100-8551.2019.08.1451
Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X. Transcriptome analysis of wheat dwarf mutant DC20. J Nucl Agric, 2019, 33: 1451-1458 (in Chinese with English abstract).
[17] Zeng M, Fan X Y, Zhang X Q, Teng L D, Pang J Y, Zhou M X, Cao F B. Genome-wide association studies and transcriptome sequencing analysis reveal novel genes associated with Al tolerance in wheat. Chemosphere, 2023, 317: 137885.
[18] Ma Y, Qiu C W, Fan Y, Huang X Y, Khan W, Wu F B, Zhou M X, Wang Y Z, Cao F B. Genome-wide association and transcriptome analysis reveals candidate genes for potassium transport under salinity stress in wheat. Environ Exp Bot, 2022, 202: 105034.
[19] Xu F D, Chen S L, Zhou S M, Yue C, Yang X W, Zhang X, Zhan K H, He D X. Genome-wide association, RNA-seq and iTRAQ analyses identify candidate genes controlling radicle length of wheat. Front Plant Sci, 2022, 13: 939544.
[20] 薛辉. 黄淮南片小麦淀粉糊化特性全基因组关联分析. 河南农业大学硕士学位论文, 河南郑州, 2019.
Xue H. Genome Wide Association Analysis of Starch Gelatinization Characteristics in Wheat from the Southern Part of the Huanghuai Rivers. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[21] Chen S L, Liu F, Wu W X, Jiang Y, Zhan K H. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theor Appl Genet, 2021, 134: 3895-3909.
[22] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测. 作物学报, 2024, 50: 871-886.
doi: 10.3724/SP.J.1006.2024.34124
Zhang L L, Yang J, Wang R J. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants. Acta Agron Sin, 2024, 50: 871-886 (in Chinese with English abstract).
[23] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析. 作物学报, 2024, 50: 363-372.
doi: 10.3724/SP.J.1006.2024.33022
Ma J, Cao Y Y. Genome-wide association study of yield traits and special combining ability in maize hybrid population. Acta Agron Sin, 2024, 50: 363-372 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.33022
[24] Song P B, Wang X, Wang X X, Zhou F, Xu X W, Wu B J, Yao J X, Lyu D Y, Yang M Y, Song X P, Sun D J. Application of 50K chip-based genetic map to QTL mapping of stem-related traits in wheat. Crop Past Sci, 2023, 72: 105-112.
[25] Zhang Y, Xu W G, Wang H W, Fang Y H, Dong H B, Qi X L. Progress in improving stem lodging resistance of Chinese wheat cultivars. Euphytica, 2016, 212: 275-286.
[26] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦品种茎秆抗倒特性分析. 江苏农业科学, 2011, 39: 140-142.
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Analysis of stem lodging resistance characteristics of wheat varieties. Jiangsu Agric Sci, 2011, 39: 140-142 (in Chinese with English abstract).
[27] 潘婷, 胡文静, 李东升, 程晓明, 吴荣林, 程顺和. 小麦茎秆实心度对茎秆强度的影响及相关性状QTL分析. 作物学报, 2017, 43: 9-18.
doi: 10.3724/SP.J.1006.2017.00009
Pan T, Hu W J, Li D S, Cheng X M, Wu R L, Cheng S H. Influence of stem solidness on stem strength and stem solidness associated QTLs in bread wheat. Acta Agron Sin, 2017, 43: 9-18 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00009
[28] 刘靖. 小麦抗倒伏相关茎秆性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2016.
Liu J. QTL Mapping of Some Culm Characters Related to Lodging Resistance in Wheat. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016 (in Chinese with English abstract).
[29] 于海飞, 杜晓宇, 殷贵鸿, 邹少奎, 李楠, 张倩, 吕永军, 王丽娜, 王雅美, 韩玉林. 普通小麦抗倒伏相关性状的全基因组关联分析. 植物遗传资源学报, 2022, 23: 147-159.
doi: 10.13430/j.cnki.jpgr.20210731001
Yu H F, Du X Y, Yin G H, Zou S K, Li N, Zhang Q, Lyu Y G, Wang L N, Wang Y M, Han Y L. Genome-wide association mapping for lodging-resistance related traits in common wheat (Triticum aestivum L.). J Plant Genet Resour, 2022, 23: 147-159 (in Chinese with English abstract).
[30] Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 1998, 279: 717-720.
doi: 10.1126/science.279.5351.717 pmid: 9445479
[31] 王艳丽, 隋建枢, 陈天青, 王伟, 何庆才. 黔麦1175茎秆抗倒伏机制的转录组测序分析. 麦类作物学报, 2023, 43: 958-967.
Wang Y L, Sui J S, Chen T Q, Wang W, He Q C. Transcriptome sequencing lodging resistance mechanism of stalk in Qianmai 1175. J Triticeae Crops, 2023, 43: 958-967 (in Chinese with English abstract).
[32] Lu K L, Chen X G, Yin Y P, Wang Z L, Yang W B, Peng D L, Tang Y H. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2014, 157: 1-7.
[33] Benveniste P. Biosynthesis and accumulation of sterols. Annu Rev Plant Biol, 2004, 55: 429-457.
pmid: 15377227
[34] 刘诗航, 王彩香, 毛新国, 刘惠民, 李昂, 景蕊莲. 小麦蛋白磷酸酶2A调节亚基基因TaBβ-1的克隆及其在非生物胁迫下的表达特性. 中国农业科学, 2010, 43: 2197-2208.
Liu S H, Wang C X, Mao X G, Liu H M, Li A, Jing R L. Cloning of protein phosphatase 2A regulatory subunit gene TaBβ-1 and its expression patterns under abiotic stresses in wheat. Sci Agric Sin, 2010, 43: 2197-2208 (in Chinese with English abstract).
[1] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[2] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[3] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[4] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[5] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[6] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[7] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[8] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[9] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[10] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[11] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[12] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[13] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[14] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[15] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!