Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat

ZHANG Zhi-Yuan1,**,ZHOU Jie-Guang1,**,LIU Jia-Jun1,2,WANG Su-Rong1,WANG Tong-Zhu1,ZHAO Cong-Hao1,YOU Jia-Ning1,3,DING Pu-Yang1,4,TANG Hua-Ping1,LIU Yan-Lin1,JIANG Qian-Tao1,CHEN Guo-Yue1,WEI Yu-Ming1,MA Jian1,*   

  1. 1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; 2 Research center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, Sichuan, 635000, China; 3 Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China; 4College of Life Science & Biotechnology, Mianyang Teachers' College, Mianyang 621000, Sichuan, China
  • Received:2023-09-08 Revised:2024-01-12 Accepted:2024-01-12 Published:2024-02-19
  • Supported by:
    This study supported by the National Natural Science Foundation of China (31971937), the International Science and Technology Cooperation and Exchanges Program of Science and Technology (2021YFH0083).

Abstract:

Effective tiller number (ETN) directly affects panicle number and is closely related to wheat grain yield. Mining quantitative trait loci (QTLs) associated with wheat tiller number and analyzing the correlation between tiller number and other important agronomic traits can provide the theoretical basis for molecular breeding. In this study, we first proposed and established a novel genetic analysis framework of “multiple environmental assessments-depth analysis of individual traits-comprehensive evaluation of various traits-friendly marker development-verification in different backgrounds”. Using this approach, low-tillering QTLs were identified and validated base on an F6 recombinant inbred line population (MC population) derived from the low-tillering plant msf and Chuannong 16 (CN16), phenotypic data of effective tillers from multiple environments, and a 16K chip-based constructed genetic linkage map. QTL mapping results showed that there were four QTLs controlling tillering on chromosomes 1A, 5A, and 6D, respectively. Qltn.sau-MC-1A was a stable and major low-tillering QTL explaining 13.39%–60.40% of the phenotypic variation rate, and its positive allele was from msf. Phenotypic analysis showed that ETN of the lines carrying the positive allele of Qltn.sau-MC-1A was significantly less than those with the negative alleles. Correlation analysis showed that ETN had a significantly positive correlation with plant height (PH), and a significantly negative correlation with thousand kernel weight (TKW), kernel number per spike (KNPS), kernel weight per spike (KWPS), and flag leaf width (FLW), but no significantly correlation with flag leaf length (FLL) and anthesis date (AD). Genetic analysis showed that positive allele of Qltn.sau-MC-1A had a significant effect on increasing KNPS, KWPS, and TKW, but delaying AD. Validation results in different backgrounds suggested that the ETN of lines carrying positive alleles from Qltn.sau-MC-1A could be significantly decreased. Collectively, we established a new genetic mapping approach and further used it to identify and validate a major QTL controlling low-tiller number, Qltn.sau-MC-1A, which laid a foundation for further fine mapping and understanding the mechanism of tiller formation.

Key words: wheat, new genetic analysis model, 16K SNP array, QTL, low-tiller number, yield

[1] 居辉, 熊伟, 许吟隆, 林而达. 气候变化对我国小麦产量的影响. 作物学报, 2005, 31: 1340‒1343.

Ju H, Xiong W, Xu Y L, Lin E D. Impacts of climate change on wheat yield in China. Acta Agron Sin, 2005, 31: 1340‒1343(in Chinese with English abstract).

[2] An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73‒84.

[3] Tshikunde N M, Mashilo J, Shimelis H, Odindo A. Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A Review. Front Plant Sci, 2019, 10: 1428.

[4] Naruoka Y, Talbert L E, Lanning S P, Blake N K, Martin J M, Sherman J D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet, 2011, 123: 1043‒1053.

[5] 杨林, 邵慧, 吴青霞, 余静, 冉从福, 李立群, 李学军. 小麦分蘖数和单株穗数QTL定位及上位性分析. 麦类作物学报, 2013, 33: 875‒882.

Yang L, Shao H, Wu Q X, Yu J, Ran C F, Li L Q, Li X J. QTLs mapping and epistasis analysis for the number of tillers and spike number per plant in wheat. J Triticeae Crops, 2013, 33: 875‒882(in Chinese with English abstract).

[6] 陈悦, 王同著, 郑跃婷, 杨雨露, 王盈, 张香粉, 陈锋, 赵磊. 小麦分蘖性状分子遗传研究进展. 麦类作物学报, 2022. 42: 564‒571.

Chen Y, Wang T Z, Zheng Y T, Yang Y L, Wang Y, Zhang X F, Chen F, Zhao L. Advances in molecular genetics of tillering characters in wheat. J Triticeae Crops, 2022, 42: 564‒571(in Chinese with English abstract).

[7] 申雪懿, 李东升, 陈琛, 曲朝喜, 郭瑞, 姚维成, 刘家俊, 邓垚, 温明星. 小麦分蘖数目遗传研究进展与展望. 麦类作物学报, 2023, 43: 1344‒1350.

Shen X Y, Li D S, Chen C, Qu C X, Guo R, Yao W C, Liu J J, Deng Y, Wen M X. Progress and prospect of genetic reserch on tiller number wheat. J Triticeae Crops, 2023, 43: 1344‒1350(in Chinese with English abstract).

[8] Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet, 2004, 109: 1303‒1310.

[9] Peng Z S, Yen C, Yang J L. Genetic control of oligo-culms in common wheat. Wheat Inf Serv, 1998, 86: 19‒24.

[10] Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285‒294.

[11] Si Y Q, Lu Q, Tian S Q, Niu J Q, Cui M, Liu X L, Gao Q, Shi X L, Ling H Q, Zheng S S. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu. Theor Appl Genet, 2022, 135: 2665‒2673.

[12] Schoen A, Yadav I, Wu S Y, Poland J, Rawat N, Tiwari V. Identification and high-resolution mapping of a novel tiller number gene (tin6) by combining forward genetics screen and MutMap approach in bread wheat. Funct Integr Genom, 2023, 23: 157.

[13] Zhang J P, Wu J, Liu W H, Lu X, Yang X M, Gao A N, Li X Q, Lu Y Q, Li L H. Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breed, 2013, 31: 441‒449.

[14] Wang Z Q, Liu Y X, Shi H R, Mo H J, Wu F K, Lin Y, Gao S, Wang J R, Wei Y M, Liu C J, Zheng Y L. Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet, 2016, 129: 603‒612.

[15] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527‒535.

[16] Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet, 2018, 131: 2439‒2450.

[17] Liu J J, Tang H P, Qu X R, Liu H, Li C, Tu Y, Li S Q, Habib A, Mu Y, Dai S F, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Chen G D, Li W, Jiang Y F, Wei Y M, Lan X J, Zheng Y L, Ma J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol, 2020, 104: 173‒185.

[18] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787‒796.

[19] Wang R, Liu Y X, Isham K, Zhao W, Wheeler J, Klassen N, Hu Y G, Bonman J M, Chen J L. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol Breed, 2018, 38: 135.

[20] Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot, 2017, 68: 1519‒1529.

[21] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, Liu G X, Zhang X Y, Liu C M, Chu J F, Zhao G Y, Xia C, Jia J Z, Sun J Q, Kong X Y, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836.

[22] Souissi A, Bahri H, M’hamed H C, Chakroun M, Benyoussef S, Frija A, Annabi M. Effect of tillage, previous crop, and n fertilization on agronomic and economic performances of durum wheat (Triticum durum Desf.) under rainfed semi-arid environment. Agronomy, 2020, 10: 1161.

[23] Zhang J M, Zhang S Q, Cheng M, Jiang H, Zhang X Y, Peng C H, Lu X H, Zhang M X, Jin J X. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health, 2018, 15: 839.

[24] Lu K, Wu B W, Wang J, Zhu W, Nie H P, Qian J J, Huang W T, Fang Z M. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J, 2018, 16: 1710‒1722.

[25] Ajmal S U, Zakir N, Mujahid M Y. Estimation of genetic parameters and character association in wheat. J Agric Biol Sci, 2009, 1: 15‒18.

[26] Jung W J, Lee Y J, Kang C S, Seo Y W. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC Plant Biol, 2021, 21: 418.

[27] Zhou J G, Li W, Yang Y Y, Xie X L, Liu J J, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, He Y J, Ren Y, Tang L W, Gou L L, Zheng Y L, Wei Y M, Ma J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theor Appl Genet, 2023, 136: 181.

[28] Ma J, Qin N N, Cai B, Chen G Y, Ding P Y, Zhang H, Yang C C, Huang L, Mu Y, Tang H P, Liu Y X, Wang J R, Qi P F, Jiang Q T, Zheng Y L, Liu C J, Lan X J, Wei Y M. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet, 2019, 132: 1363‒1373.

[29] Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, Kang H Y, Chen G D, Lan X J. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet, 2020, 133: 297‒315.

[30] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42: 799‒807.

Chen H X, Li C, Wu K Y, Wang Y , Mu Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. J Triticeae Crops, 2022, 42: 799‒807(in Chinese with English abstract).

[31] 唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析. 中国农业科学, 2022, 55: 1492‒1502.

Tang H P, Chen H X, Li C, Gou L L, Tan C, Mu Y, Tang L W, Lan X J, Wei Y M, Ma J. Unconditional and conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Sci Agric Sin, 2022, 55: 1492‒1502(in Chinese with English abstract).

[32] McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R. Catalogue of gene symbols for wheat; proceedings of the 12th international wheat genetics symposium. Yokohama Japan, 2013: 8‒13.

[33] Wang S R, Wang T Y, Xuan Q J, Qu X R, Xu Q, Jiang Q T, Pu Z E, Li Y, Jiang Y F, Chen G Y, Deng M, Liu Y L, Tang H P, Chen G D, He Y J, Gou L L, Wei Y M, Zheng Y L, Ma J. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. Theor Appl Genet, 2023, 136: 90.

[34] Qu X R, Li C, Liu H, Liu J J, Luo W, Xu Q, Tang H P, Mu Y, Deng M, Pu Z E, Ma J, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wei Y M, Zheng Y L, Lan X J, Ma J. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theor and Appl Gene, 2022, 135: 2849‒2860.

[35] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor and Appl Gene, 2019, 132: 3155‒3167.

[36] Liu J J, Zhou J G, Tang H P, Tu Y, Mu Y, Gou L L, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Li W, Jiang Y F, Yan Z H, Kang H Y, Wei Y M, Lan X J, Zheng Y L, Ma J. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop J, 2022, 10: 185‒193.

[37] Tu Y, Liu H, Liu J J, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Pu Z E, Chen G D, Peng Y Y, Jiang Y F, Xu Q, Kang H Y, Lan X J, Wei Y M, Zheng Y L, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet, 2021, 134: 261‒278.

[38] Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965‒1968.

[39] Richards R. A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res, 1988, 39: 749‒757.

[40] Yu M, Liu Z H, Yang B, Chen H, Zhang H, Hou D B. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep, 2020, 10: 12261.

[41] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237‒2248.

Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lü J J, Ma J. QTL Identification and genetic analysis of plant height in wheat based on 16K SNP array. Sci Agric Sin, 2023, 56: 2237‒2248(in Chinese with English abstract).

[42] Yao F Q, Li X H, Wang H, Song Y N, Li Z Q, Li X G, Gao X Q, Zhang X S, Bie X M. Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biol, 2021, 21: 443.

[43] 张晶, 张定一, 王姣爱, 党建友. 小麦单株有效分蘖数与农艺性状的相关性研究. 山西农业科学, 2009, 37: 17‒19, 26.

Zhang J, Zhang D Y, Wang J A, Dang J Y. The Dependence study of the effective tillers per plant and agronomic characters in wheat. J Shanxi Agric Sci, 2009, 37: 17‒19, 26(in Chinese with English abstract).

[44] 倪永静, 姜晓君, 卢祖权, 朱培培, 胡新, 韩同进. 30份国内外小麦种质资源主要农艺性状的分析与评价. 中国农学通报, 2020, 36: 16‒22.

Ni Y J, Jiang X J, Lu Z Q, Zhu P P, Hu X, Han T J. 30 Worldwide Wheat Germplasm Resources: Analysis and Evaluation of Main Agronomic Traits. Chin Agric Sci Bull, 2020, 36: 16‒22(in Chinese with English abstract).

[45] Kebrom T H, Chandler P M, Swain S M, King R W, Richards R A, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol, 2012, 160: 308‒318.

[1] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[2] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[3] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[4] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[5] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[6] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
[7] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[8] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[9] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[10] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[11] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[12] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[13] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[14] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[15] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!