Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2167-2178.doi: 10.3724/SP.J.1006.2024.31081

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects

HUANG Lin-Yu1,2**(), ZHANG Xiao-Yue1,2**(), LI Hao1, DENG Mei1, KANG Hou-Yang1,2, WEI Yu-Ming1,2, WANG Ji-Rui1,2, JIANG Yun-Feng1,2,*(), CHEN Guo-Yue1,2,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130, Sichuan, China
  • Received:2023-12-21 Accepted:2024-04-01 Online:2024-09-12 Published:2024-04-30
  • Contact: *E-mail: gychen@sicau.edu.cn; E-mail: gychen@sicau.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Major Program of National Agricultural Science and Technology of China(NK20220607);National Natural Science Foundation of China(32272059);Major Science and Technology Project of Sichuan Province(2022ZDZX0014);Key Research and Development Project of Sichuan Province(2021YFYZ0002)

Abstract:

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a worldwide wheat disease that causes large losses in production. The lack of in-depth understanding of genetic and breeding utilization effects, coupled with the linkage of undesirable traits, are the key factors that limit the wide application of most of the discovered wheat stripe rust resistance genes in breeding and production. Our previous studies have shown that the wheat landraces, Hongmangmaizi (HM), exhibited stable adult plant stripe rust resistance to prevalent physiological races and pathogenic groups of stripe rust in China. In order to reveal the genetic basis of HM adult plant resistance to stripe rust, F1, F2, and F2:3 segregating populations derived from the cross between Avocet S and HM were inoculated with mixed Pst and evaluated for stripe rust reaction at adult stage in the field. Through bulked segregation analyses (BSA) using 55K single-nucleotide polymorphism array and exon sequencing technology, we identified two quantitative trait loci (QTL) on chromosomes 7AL and 7DS, designated as QYr.HM-7AL and QYr.HM-7DS, explaining 11.64%-15.25% and 24.33%-40.58% of the phenotypic variance, respectively. Through integrated linkage, genetic and physical map analyses indicated that the major QTL QYr.HM-7DS was corresponding to the Yr18 gene, whereas QYr.HM-7AL, which was the second most stable QTL, should be a potential novel QTL for adult-stage stripe rust resistance. Furthermore, the kompetitive allele- specific PCR (KASP) markers, tightly linked with QYr.HM-7AL, were developed and validated. Based on construction of BC1F2 genetic improvement population derived from a cross between Mianmai 1618 × HM, the main QTL genetic effect of stripe rust resistance and its synergistic effect on yield related traits were analyzed. The results showed that the two QTL (Yr18 and QYr.HM-7AL) could significantly reduce the damage of stripe rust and had a positive effect on spike length and tillering number under the genetic background of Mianmai 1618. The above results indicated that the QTLs of adult-stage stripe rust resistance from HM could be used in wheat yield breeding programs.

Key words: wheat landrace, adult plant stripe rust resistance genes, Hongmangmaizi, genetic effect, breeding effect

Table 1

Primer sequences and physical locations of KASP markers in the target intervals of chromosome"

染色体
Chr.
物理位置
Physical location
(Mb)
KASP标记名称
KASP marker
引物序列
Primer sequence primer (5′−3′)
7A 419.349,967 KP7A-419.35 AGGGTGAAAGGGAAAATGCT[T/C]CTCTCACTCACCTCGCGAAG
7A 422.208,396 KP7A-422.21 GCTGATCTGAACCCAAGTCG[A/G]CCCATCATCATCGGACAGGG
7A 433.437,714 KP7A-433.44 ACTCTGCATCCATGACTAAGATTT[C/A]TGTTTAGTGGGCTCAGGCTG
7A 442.806,961 KP7A-442.81 ATGTCCACTACAAAGATGCTC[A/G]GCTTTCTGCAACAACGCTGT
7A 451.867,532 KP7A-451.87 TGATTCATGATATTCAGAGCTGAC[A/G]TGCAGAGAAGACAATTATCCGC
7A 472.559,919 KP7A-472.564 GGGAAAAATGCGGTCAGAAAC[G/T]CTCCCTCTCTTTTCTCGTTGC
7A 512.089,130 KP7A-512.09 AGGATGACAACAGAACAAAAGG[T/G]CAGTTATTATTTGGGCTCTGTGC
7A 523.738,213 KP7A-523.74 GAGATATACAGGTTACCATCGACT[G/A]TTGTGGCACCAAAATTCCGG
7A 527.116,548 KP7A-527.12 CATGACCCAGCTGAAGTGAAA[C/T]ACAATAATTTCACCATCCTTCGGC
7A 533.566,242 KP7A-533.57 TGGGATTGACAAATTTTGCAC[T/G]AGAAGAAGATCAAGGCCATGGT
7A 537.057,222 KP7A-537.06 GCACCAACAGATTCTAGCGTAA[C/T]GCCATTTTATCACGCTAGCCA
7A 548.999,927 KP7A-549.00 GGATTGATCTCCACAAACTGTATC[G/T]AACGGAGGCAGACAATTTGC
7A 561.888,353 KP7A-561.89 TGAGCCTCGTAACATTCCAGAT[C/T]CTCTGTTCGCTTCAGCAGGT
7A 574.753,670 KP7A-574.75 AACAACGAGAACATCTACCACA[A/T]TGGAACATGGAGGCTGATGG
7A 603.112,465 KP7A-603.11 GGTCTGCGAGACTGGGAT[T/C]GGAGGTGGCAATGACAACAG
7D 19.560,664 KP7D-19.56 GGTGGTCAGGAATGTGCTC[G/A]ACCACATGAGCAGTACGGTG
7D 36.681,470 KP7D-36.68 CCGATGCCACTACAGTAACC[G/A]TGCGACACAGCTAATGGGAA
7D 47.418,828 KP7D-E11 GGGAGCATTATTTTTTTCCATC[A/T]AGCGAATCCAGTATGGAAAT
7D 71.630,056 KP7D-71.63 GCAAAACGTTGAAGAAATAGCAGA[A/C]CTCTTCCATCGGTGTTAATTTCC
7D 90.566,222 KP7D-90.57 TCTGTAACACACATCAGCCTG[G/T]GCAGTCATCACAGAATCCAGC
7D 159.737,289 KP7D-159.74 CAGCAGTAGTGATCCGTGT[C/T]CATGGCTTTGACGAATGTGAG
3D 610.439,082 KP3D-610.44 GCTTGTTAGAATCTCACATGTCTT[A/G]GCTTGTTAGAATCTCACATGTCTTG
5A 51.471,481 KP5A-51.47 GCATTTGCATTCTTCAGTTTTGC[A/C]GCGGCTGCACAGAAGAAATT

Fig. 1

Analysis of QTL for resistance to stripe rust in wheat landrace Hongmangmai a: the stripe rust at the seedling and the adult plant of HM and Avocet S; b and c: genetic linkage map of QYr.HM-7AL and QYr.HM-7DS, respectively; d: the QYr.HM-7DS compared with Yr18 haplotype; e: the genetic effects analysis of QYr.HM-7AL and QYr.HM-7DS in HM × Avocet S F2 and F2:3 populations."

Fig. S1

Distribution of candidate interval of resistance genes to stripe rust in Hongmangmai a: SNP density of 55K SNP chip; b: Distribution of G’-value on chromosome."

Table 2

Genetic effects analysis of QYr.HM-7AL and QYr.HM-7DS in HM × Avocet S F2 and F2:3 population"

基因
Gene
QYr.HM-7AL Yr18 F2分离群体
IT (infection type in 2021)
F2分离群体
DS (disease severity in 2021)
F2:3家系
IT (infection type in 2022)
F2:3家系
DS (disease severity in 2022)
None - - 7.58 79.43 6.63 71.91
QYr.HM-7AL + - 4.67 38.34 4.99 40.60
Yr18 - + 4.10 26.40 4.27 29.90
QYr.HM-7AL+Yr18 + + 3.80 20.81 4.23 28.25

Fig. 2

Effect of QYr.HM-7AL and Yr18 on infection type (IT) in BC1F2 population of Mianmai 1618 × HM"

Fig. 3

Correlation analysis between infection type of stripe rust and yield-related traits PH: plant height; SL: spike length; TN: tiller number; GNS: grain number per spike; TGW: 1000-grains weight; GW: grain width; GL: grain length. * Significant at the 0.05 probability level; ** Significant at the 0.01 probability level."

Fig. 4

Genetic effects of QYr.HM-7AL and QYr.HM-7DS (=Yr18) on yield-related traits in the genetic background of Mianmai 1618 Abbreviations are the same as those given in Fig. 3."

[1] Rapilly F. Yellow rust epidemiology. Annu Rev Phytopathol, 1979, 17: 59-73.
[2] Stubbs R W. Stripe rust. In: Roelfs A P, Bushnell W R. Creal Rusts. Vol. II. Disease, Distribution, Epidemiology, and Control. New York, Academic Press, 1985. pp 61-101.
[3] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002. pp 370-373.
Li Z Q, Zeng S M. Wheat Rusts in China. Beijing: China Agriculture Press, 2002. pp 370-373 (in Chinese).
[4] Zeng S M, Luo Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis, 2006, 90: 980-988.
[5] Wan A M, Chen X M, He Z H. Wheat stripe rust in China. Austr J Agric Res, 2007, 58: 605-619.
[6] Xia X C, Li Z F, Li G Q, He Z H, Singh R P. Stripe rust resistance in Chinese bread wheat cultivars and lines. In: Buck H T. Wheat Prod Stress Environ. Dordrecht: Springer Press, 2007. pp 77-82.
[7] Wellings C R. Global status of stripe rust: a review of historical and current threats. Euphytica, 2011, 179: 129-141.
[8] 颜济. 五十年四川小麦育种研究的回顾与前瞻. 四川农业大学学报, 1999, 17(1): 108-113.
Yan J. History and prospect of study on wheat breeding of fifty years in Sichuan. J Sichuan Agric Univ, 1999, 17(1): 108-113 (in Chinese with English abstract).
[9] 余遥. 四川小麦. 成都: 四川科学技术出版社, 1998. pp 397-399.
Yu Y. Sichuan Wheat. Chengdu: Sichuan Science and Technology Press, 1998. pp 397-399 (in Chinese).
[10] 刘正德, 蒋滨. 四川小麦生产品种抗条锈性变异及对策. 西南农业学报, 1999, 12(1): 87-91.
Liu Z D, Jiang B. Variation and countermeasures of stripe rust resistance of wheat cultivars in Sichuan. Southwest China J Agric Sci, 1999, 12(1): 87-91 (in Chinese with English abstract).
[11] 韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种(系)抗条锈病性评价. 中国农业科学, 2010, 43: 2889-2896.
Han D J, Wang Q L, Zhang L, Wei G R, Zeng Q D, Zhao J, Wang X J, Huang L L, Kang Z S. Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Sci Agric Sin, 2010, 43: 2889-2896 (in Chinese with English abstract).
[12] Zeng Q D, Han D J, Wang Q L, Yuan F P, Wu J H, Zhang L, Wang X J, Huang L L, Chen X M, Kang Z S. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 2014, 196: 271-284.
[13] 刘太国, 王保通, 贾秋珍, 章振羽, 李强, 曹世勤, 彭云良, 金杜林, 李明菊, 刘博, 高利, 胡小平, 陈万全. 2010-2011年度我国小麦条锈菌生理转化研究. 麦类作物学报, 2012, 3: 574-578.
Liu T G, Wang B T, Jia Q Z, Zhang Z Y, Li Q, Cao S Q, Peng Y L, Jin D L, Li M J, Liu B, Gao L, Hu X P, Chen W Q. Physiologic specialization of Puccinia striiformis f. sp. tritici in China during 2010-2011. J Triticeae Crops, 2012, 3: 574-578 (in Chinese with English abstract).
[14] 黄瑾, 贾秋珍, 杜金林, 曹世勤, 张勃, 孙振宇, 骆惠生, 王晓明. 2010-2012年甘肃省小麦条锈病菌生理小种变化动态监测. 植物保护, 2014, 40(3): 101-116.
Huang J, Jia Q Z, Du J L, Cao S Q, Zhang B, Sun Z Y, Luo H S, Wang X M. Population changes of Puccinia striiformis f. sp. tritici in Gansu province during 2010-2012. Plant Prot, 2014, 40(3): 101-116 (in Chinese with English abstract).
[15] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017, 5: 681-687.
Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp.tritici in China. Acta Phytopath Sin, 2017, 47: 681-687 (in Chinese with English abstract).
[16] Mcintosh R A, Dubcovsky J, Rogers W J, Xia X C, Raupp W J. Catalogue of gene symbols for wheat:2021 supplement. Ann Wheat Newslett, 2021, 67: 104-113.
[17] Klymiuk V, Chawla H S, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol, 2022, 5: 826-835.
[18] Feng J F, Yao F J, Wang M N, See D R, Chen X M. Molecular mapping of Yr85 and comparison with other genes for resistance to stripe rust on wheat chromosome 1B. Plant Dis, 2023, 107: 3585-3591.
[19] Zhu Z W, Cao Q, Han D J, Wu J H, Tong J Y, Xu X W, Yan J, Zhang Y, Xu K J, Wang F J, Dong Y C, Gao C B, He Z H, Xia X C, Hao Y F. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet, 2023, 136: 142-151.
[20] 冯晶, 王凤涛, 蔺瑞明, 徐世昌, 陈万权. 小麦条锈病抗病遗传及菌源基地基因布局研究进展. 植物保护学报, 2022, 49: 263-275.
Feng J, Wang F T, Lin R M, Xu S C, Chen W Q. Research progress on genetics of wheat stripe rust resistance and distribution of resistant genes in inoculum source areas. J Plant Prot, 2022, 49: 263-275 (in Chinese with English abstract).
[21] Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, Sharma P K, Balyan H S, Gupta P K. Meta-QTLs and candidate genes for stripe rust resistance in wheat. Sci Rep (UK), 2021, 11: 22923.
doi: 10.1038/s41598-021-02049-w pmid: 34824302
[22] Adhikari S, Kumari J, Jacob S R, Prasad P, Gangwar O P, Lata C, Thakur R, Singh A K, Bansal R, Kumar S, Bhardwaj S C, Kumar S. Landraces-potential treasure for sustainable wheat improvement. Genet Resour Crop Evol, 2022, 69: 499-523.
[23] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48: 3439-3453.
doi: 10.3864/j.issn.0578-1752.2015.17.011
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 17: 3439-3453 (in Chinese with English abstract).
[24] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46: 4254-4262.
doi: 10.3864/j.issn.0578-1752.2013.20.008
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46: 4254-4262 (in Chinese with English abstract).
[25] Ma D F, Li Q, Tang M S, Chao K X, Li J C, Wang B T, Jing J X. Mapping of gene conferring adult-plant resistance to stripe rust in Chinese wheat landrace Baidatou. Mol Breed, 2015, 35: 157.
[26] Gessese M, Bariana H, Wong D, Hayden M, Bansal U. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus 27430. Plant Dis, 2019, 103: 1166-1171.
doi: 10.1094/PDIS-06-18-1055-RE pmid: 30998448
[27] Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U. Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet, 2019, 132: 3169-3176.
doi: 10.1007/s00122-019-03416-y pmid: 31463519
[28] Herrera-Foessel S A, Singh R P, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C X, Calvo-Salazar V, Lagudah E S. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet, 2014, 127: 781-789.
doi: 10.1007/s00122-013-2256-9 pmid: 24408377
[29] Zhang P P, Lan C X, Singh R P, Huerta-Espino J, Li Z F, Lagudah E, Bhavani S. Identification and characterization of resistance loci to wheat leaf rust and stripe rust in Afghan landrace KU3067. Front Plant Sci, 2022, 13: 894528.
[30] 董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000. p 17.
Dong Y C, Zheng D S. Wheat Genetic Resources in China. Beijing: China Agriculture Press, 2000. p 17 (in Chinese).
[31] Yao F J, Guan F N, Duan L Y, Long L, Tang H, Jiang Y F, Li H, Jiang Q T, Wang J R, Qi P F, Kang H Y, Li W, Ma J, Pu Z E, Deng M, Wei Y M, Zheng Y L, Chen X M, Chen G Y. Genome-wide association analysis of stable stripe rust resistance loci in a Chinese wheat landrace panel using the 660K SNP array. Front Plant Sci, 2021, 12: 783830.
[32] Line R F, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. Tech Bull (USA), 1992: 1-44.
[33] Chen X M, Jones S S, Line R F. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology, 1995, 86: 1228-1233.
[34] 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 81-83.
Li L H, Li X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006. pp 81-83 (in Chinese).
[35] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088-2091.
[36] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[37] Zhou X L, Han D J, Chen X M, Guo H L, Guo S J, Rong L, Wang Q L, Huang L L, Kang Z S. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet, 2014, 127: 2349-2358.
doi: 10.1007/s00122-014-2381-0 pmid: 25163935
[38] Kanwal M, Qureshi N, Gessese M, Forrest K, Babu P, Bariana H, Bansal U. An adult plant stripe rust resistance gene maps on chromosome 7A of Australian wheat cultivar Axe. Theor Appl Genet, 2021, 134: 2213-2220.
doi: 10.1007/s00122-021-03818-x pmid: 33839800
[39] Zhou X L, Wang W L, Wang L L, Hou D Y, Jing J X, Wang Y, Xu Z Q, Yao Q, Yin J L, Ma D F. Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet, 2011, 123: 2349-2358.
[40] Ma D F, Peng F, Fang Z W, Chao K X, Jing J X, Zhang C Q. Genetic and molecular mapping of stripe rust resistance genes in wheat cultivar Zhongliang 12. J Phytopathol, 2014, 163: 98-104.
[41] Liu W Z, Maccaferri M, Chen X M, Laghetti G, Pignone D, Pumphrey M, Tuberosa R. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theor Appl Genet, 2017, 130: 2249-2270.
[42] 钟晓. 小麦品冬34的重要性状QTL分析及Yr62基因的应用研究. 西南科技大学硕士学位论文, 四川绵阳, 2021. pp 17-22.
Zhong X. QTL Analysis of Important Traits of Winter Wheat Pindong 34 and Application of Yr62 Gene. MS Thesis of Southwest University of Science and Technology, Mianyang, Sichuan, China, 2021. pp 17-22 (in Chinese with English abstract).
[43] 李孟凯. Yr10Yr18Yr36基因在小麦抗条锈病改良中的应用. 山东农业大学硕士学位论文, 山东泰安, 2017. pp 40-42.
Li M K. Application of Yr10, Yr18 and Yr36 Genes in Wheat Improvement for Stripe Rust Resistance. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2017. pp 40-42 (in Chinese with English abstract).
[44] 曾庆东, 吴建辉, 王琪琳, 韩德俊, 康振生. 持久抗病基因Yr18在中国小麦抗条锈育种中的应用. 麦类作物学报, 2012, 32: 13-17.
Zeng Q D, Wu J H, Wang Q L, Han D J, Kang Z S. Application of durable resistance gene Yrl8 to stripe rust in Chinese wheat breeding. J Triticeae Crops, 2012, 32: 13-17 (in Chinese with English abstract).
[45] 杨文雄, 杨芳萍, 梁丹, 何中虎, 尚勋武, 夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测. 作物学报, 2008, 34: 1109-1113.
Yang W X, Yang F P, Liang D, He Z H, Shang X W, Xia X C. Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin, 2008, 34: 1109-1113 (in Chinese with English abstract).
[46] 管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 18: 3629-3637.
Guan F N, Long L, Yao F J, Wang Y Q, Jiang Q T, Kang H Y, Jiang Y F, Li W, Deng M, Li H, Chen G Y. Evaluation of resistance to stripe rust and molecular detection of important known Yr gene(s) of 152 Chinese wheat landraces from the Huang-Huai- Hai. Sci Agric Sci, 2020, 18: 3629-3637 (in Chinese with English abstract).
[47] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测. 作物学报, 2021, 47: 1309-1323.
doi: 10.3724/SP.J.1006.2021.01061
Xi L, Wang Y Q, Zhu W, Wang Y, Chen G Y, Pu Z J, Zhou Y H, Kang H Y. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province. Acta Agron Sin, 2021, 47: 1309-1323 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01061
[48] Singh R P, Huerta-Espino J. Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci, 1997, 37: 390-395.
[49] Long L, Yao F J, Guan F N, Cheng Y K, Duan L Y, Zhao X Y, Li H, Pu Z E, Li W, Jiang Q T, Wei Y M, Ma J, Kang H Y, Dai S F, Qi P F, Xu Q, Deng M, Zheng Y L, Jiang Y F, Chen G Y. A stable quantitative trait locus on chromosome 5BL combined with Yr18 conferring high-level adult plant resistance to stripe rust in Chinese wheat landrace Anyuehong. Phytopathology, 2021, 111: 1594-1601.
[50] Wang Z, Ren J D, Du Z Y, Che M Z, Zhang Y B, Quan W, Jiang X, Ma Y, Zhao Y, Zhang Z J. Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. Theor Appl Genet, 2019, 132: 457-471.
doi: 10.1007/s00122-018-3232-1 pmid: 30426175
[51] 王金朋, 李吉宁, 索梦曦. 作物野生近缘植物保护与可持续利用. 中国野生植物资源, 2023, 42(3): 15-20.
Wang J P, Li J N, Suo M X. Conservation and sustainable utilization of crop wild relatives. Chin Wild Plant Resour, 2023, 42(3): 15-20 (in Chinese with English abstract).
[52] 曾庆东, 沈川, 袁凤平, 王琪琳, 吴建辉, 薛文波, 詹刚明, 姚石, 陈伟, 黄丽丽, 韩德俊, 康振生. 小麦抗条锈病已知基因对中国当前流行小种的有效性分析. 植物病理学报, 2015, 45: 641-650.
Zeng Q D, Shen C, Yuan F P, Wang Q L, Wu J H, Xue W B, Zhan G M, Yao S, Chen W, Huang L L, Han D J, Kang Z S. The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin, 2015, 45: 641-650 (in Chinese with English abstract).
[1] HU Mei-Ling, XUE Xiao-Meng, WU Jie, ZHI Chen-Yang, LIU Nian, CHEN Xiao-Ping, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed [J]. Acta Agronomica Sinica, 2022, 48(11): 2724-2732.
[2] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[3] Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG,Jun-Jie ZHANG,Wei-Guo HU,Jun LI,Chang-You WANG,Hong ZHANG,Chun-Huan CHEN. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat [J]. Acta Agronomica Sinica, 2020, 46(3): 365-384.
[4] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[5] LU Xiao-Ping,LIU Dan-Dan,WANG Shu-Yan,MI Fu-Gui,HAN Ping-An,Lü Er-Suo. Genetic Effects and Heterosis Prediction Model of Sorghum  bicolor × S.sudanense Grass [J]. Acta Agron Sin, 2014, 40(03): 466-475.
[6] CUI Jia-Cheng,LIU Jia,MEI De-Sheng,LI Yun-Chang,FU Li,PENG Peng-Fei,WANG Jun,HU Qiong. Genetic and Correlation Analysis on Pod Shattering Traits in Brassica napus L. [J]. Acta Agron Sin, 2013, 39(10): 1791-1798.
[7] XU Xin,LI Xiao-Jun,ZHANG Ling-Li,LI Xiu-Quan,YANG Xin-Ming,LI Li-Hui. Genetic Diversity of High-Molecular-Weight Glutenin Subunit Composition in Chinese Wheat Landraces [J]. Acta Agron Sin, 2012, 38(07): 1205-1211.
[8] WANG Jian,ZHAO Kai-Jun,QIAO Feng,YANG Sheng-Long. Genetic Effects of Different RNA Interference Fragments from OsGA20ox2 on Plant Height and Other Agronomic Traits in Rice [J]. Acta Agron Sin, 2012, 38(04): 632-638.
[9] HAO Jun-Jie, LIU Huan-Min, MA Qi-Xiang, CUI Xiao-Wei, XU Ji-Wen, GU Xin-He, GAO Jun-Shan. Genetic Effects and Diagnosis of Premature Senescence of Leaf in Upland Cotton [J]. Acta Agron Sin, 2011, 37(03): 389-396.
[10] FENG Hong-Jie,WANG Jie,SUN Jun-Ling,ZHANG Xin-Yu,GU Yin-Hua,SUN Jie,DU Xiong-Meng. Genetic Effects of Fiber Color in Brown-Cotton (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2010, 36(06): 961-967.
[11] Ainijiang,ZHU Xin-Xia,GUAN Rong-Zhan,WAN Ying,ZHANG Tian-Zhen. Genetic Analysis of Major Loci Groups of Pre-frost Lint Yield in Upland Cotton [J]. Acta Agron Sin, 2010, 36(05): 736-743.
[12] LI Jun,WEI Hui-Ting,YANG Su-Jie,LI Chao-Su,TANG Yong-Lu,HU Xiao-Rong,YANG Wu-Yun. Genetic Effects of 1BS Chromosome Arm on the Main Agrionomic Traits in Chuanmai 42 [J]. Acta Agron Sin, 2009, 35(12): 2167-2173.
[13] TAN Jing;YAO Wen-Hua;XU Chun-Xia;LUO Li-Ming;FAN Xing-Ming. Genetic Effects of Quality Protein Maize on Kernel Traits [J]. Acta Agron Sin, 2008, 34(05): 904-908.
[14] SHEN Jun-Hui;LIU Guang-Jie;HUANG De-Run;ZHAN Xiao-Deng;CHEN Sheng-Guang;CAO Li-Yong;CHENG Shi-Hua. Genetic Effects of Cytoplasm and Nucleoplasmic Interaction on Resistance to Chilo suppressalis in Hybrid Rice [J]. Acta Agron Sin, 2007, 33(09): 1399-1404.
[15] DU Jin-Kun;YANG Xin-Quan;ZHANG Yi-Rong;NI Zhong-Fu;SUN Qi-Xin. Polymorphism Analysis of HMW-GS in Chinese Endemic Wheat Landraces, Spelt and Club Wheat [J]. Acta Agron Sin, 2007, 33(01): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!