Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (08): 1103-1111.doi: 10.3724/SP.J.1006.2016.01103

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L.

WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
  • Received:2016-01-14 Revised:2016-05-09 Online:2016-08-12 Published:2016-05-30
  • Contact: 刘佳, E-mail: liujia02@caas.cn, Tel: 027-86711556 E-mail:wangwx8@gmail.com
  • Supported by:

    This study was support by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Group No. 118), the Earmarked Fund for China Agriculture Research System (CARS-13), the Natural Science Foundation of China (31471535), the Natural Science Foundation of Hubei Province (2014CFB156) and the Hubei Agricultural Science and Technology Innovation Center.

Abstract:

Branch angle is one of important plant architectural traits in rapeseed (Brassica napus), which is the basic requirement for high-density cultivation and mechanical harvesting. To reveal the genetic mechanism of branch angle in rapeseed, we produced six generations (P1, P2, F1, F2, BCP1, and BCP2) from a cross between loose-type 6098B and compact-type Purler to analyze genetic effects of branch angle in rapeseed by the mixed major gene plus polygene inheritance model. The branch angle showed a continuous normal distribution, where both the basal branch angle and the top branch angle were dominated by a pair of major gene with additive-dominant effects plus polygenes with additive-dominance-epistasis effects (D-0 model). The additive effect and dominant effect of major gene of the top branch angle were 4.939 and –4.156, the heritability in BCP1, BCP2 and F2 was 34.08%, 1.40%, and 14.99%, respectively for the major gene, and 24.43%, 61.72%, and 63.98%, respectively for the polygenes. The additive effect and dominant effect of major gene of the basal branch angle were 2.217 and –1.941, the heritability in BCP1, BCP2 and F2 was 7.86%, 1.24%, and 4.84%, respectively for the major gene, and 66.46%, 58.49%, and 73.96%, respectively for the polygenes. Results of this study found that the branch angle traits of 6098B×Purler is controlled by polygenes, but there is a major gene among them. The research may be useful for further understanding and genetic improvement of plant architecture in rapeseed.

Key words: Brassica napus L., Branch angle, Ideal plant architecture, Major gene plus polygene, Genetic effects

[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36: 414–421
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014, 36: 414–421 (in Chinese with English abstract)
[2] 唐敏强, 程晓晖, 童超波, 刘越英, 赵传纪, 董彩华, 于景印, 马小艮, 黄军艳, 刘胜毅. 甘蓝型油菜株高性状的全基因组关联分析. 作物学报, 2015, 41: 1121–1126
Tang M Q, Cheng X H, Tong C B, Liu Y Y, Zhao C J, Dong C H, Yu J Y, Ma X G, Huang J Y, Liu S Y. Genome-wide association analysis of plant height in rapeseed (Brassica napus). Acta Agron Sin, 2015, 41: 1121–1126 (in Chinese with English abstract)
[3] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊. 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015, 41: 1027–1038
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z. Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L. Acta Agron Sin, 2015, 41: 1027–1038 (in Chinese with English abstract)
[4] 张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695–700
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant heigh using high desity SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695–700 (in Chinese with English abstract)
[5] 谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义. 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012, 38: 1802–1809
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y. Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012, 38: 1802–1809 (in Chinese with English abstract)
[6] Xu J S, Song X, Cheng Y, Zou X L, Zeng L, Qiao X, Lu G Y, Fu G P, Qu Z, Zhang X K. Identification of QTLs for branch number in oilseed rape (Brassica napus L.). J Genet Genom, 2014, 41: 557–559
[7] Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Zhang T Y, Takeshi Nishio, Wu X M. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2015, 242: 169–177
[8] 王俊生, 李少钦, 张耀文. 不同栽培密度对紧凑型油菜产量和主要性状的影响. 耕作与栽培, 2006, (3): 25–26
Wang J S, Li S Q, Zhang Y W. Effects of different planting density on yield and main characters of compact in rapeseed. Gengzuo yu Zaipei, 2006, (3): 25–26 (in Chinese)
[9] 张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 西南大学硕士学位论文, 重庆, 2013. pp 3–7
Zhang Q. Genetic Effects Analysis and QTL Mapping of Major Plant-Type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013. pp 3–7 (in Chinese with English abstract)
[10] 张文学, 李殿荣, 田建华. 甘蓝型油菜紧凑型和松散型杂种一代分枝性状的遗传效应. 中国农学通报, 2000, 16(5): 17–19
Zhang W X, Li D R, Tian J H. Genetic effect of hybrid F1 branching character of CCT and LCT in Brassica napus. Chin Agric Sci Bull, 2000, 16(5): 17–19 (in Chinese with English abstract)
[11] 王俊生, 田建华, 张继澍, 李殿荣, 袁志发. 紧凑型油菜株型性状的遗传及其与主要产量性状的相关性研究. 西北农林科技大学学报(自然科学版), 2005, 33: 7–12
Wang J S, Tian J H, Zhang J S, Li D R, Yuan Z F. Study on the heredity of plant-type traits in compact rapeseed lines and the genetic correlation with yield traits. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2005, 33: 7–12 (in Chinese with English abstract)
[12] 唐佳. 甘蓝型油菜株型相关性状的杂种优势及配合力分析. 四川农业大学硕士学位论文, 四川成都, 2012. pp 3–7
Tang J. Analyses on Heterosis and Combining Ability of the Traits Related to Plant Types in Brassica napus L. MS Thesis of Sichuan Agricultural University, Sichuan, China, 2014. pp 3–7 (in Chinese with English abstract)
[13] 漆丽萍. 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014. pp 11–12
Qi L P. QTL Analysis for Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, wuhan, China, 2014. pp 11–12 (in Chinese with English abstract)
[14] Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q. Characterising variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci, 2016, 7: 21
[15] 盖钧镒. 植物数量性状遗传体系. 科学出版社, 2003. pp 224−265, 351−370
Gai J Y. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 224−265, 351−370 (in Chinese)
[16] 李余生, 朱镇, 张亚东, 赵凌, 王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008, 34: 1728–1733
Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008, 34: 1728–1733 (in Chinese with English abstract)
[17] 周清元, 崔翠, 阴涛, 陈东亮, 张正圣, 李加纳. 甘蓝型油菜角果长度的主基因+多基因混合遗传模型. 作物学报, 2014, 40: 1493–1500
Zhou Q Y, Cui C, Yin T, Chen D L, Zhang Z S, Li J N. Genetic analysis of silique length using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2014, 40: 1493–1500 (in Chinese with English abstract)
[18] 金岩, 吕艳艳, 付三雄, 戚存扣. 甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析. 作物学报, 2014, 40: 1964–1972
Jin Y, Lu Y Y, Fu S X, Qi C K. Inheritance of major gene plus polygene of water-logging tolerance in Brassica napus L. Acta Agron Sin, 2014, 40: 1964–1972 (in Chinese with English abstract)
[19] 田露申, 牛应泽, 余青青, 郭世星, 柳丽. 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009, 42: 3987–3995
Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009, 42: 3987–3995 (in Chinese with English abstract)
[20] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376–381
Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34: 376–381 (in Chinese with English abstract)
[21] 王会, 桑世飞, 梅德圣, 李云昌, 刘佳, 付丽, 王军, 陈玉峰, 胡琼. 甘蓝型油菜DH群体抗裂角性遗传分析. 中国油料作物学报, 2014, 36: 437–449
Wang H, Sang S F, Mei D S, Li Y C, Liu J, Fu L, Wang J, Chen Y F, Hu Q. Inheritance analysis of pod shatter resistance using a DH population in Brassica napus L. Chin J Oil Crop Sci, 2014, 36: 437–449 (in Chinese with English abstract)
[22] 汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳. 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 2015, 37: 566–570
Wang W X, Hu Q, Mei D S, Li Y C, Wang H, Wang J, Fu L, Liu J. Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci, 2015, 37: 566–570 (in Chinese with English abstract)
[23] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013, 36(6): 1–6
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013, 36(6): 1–6 (in Chinese with English abstract)
[24]Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49
[25]马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31: 180–184
Ma N, Zhang C L, Li J, Li G M. Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2009, 31: 180–184 (in Chinese with English abstract)
[26]朱珊, 李银水, 余常兵, 谢立华, 胡小加, 张树杰, 廖星, 廖祥生, 车志. 密度和氮肥用量对油菜产量及氮肥利用率的影响. 中国油料作物学报, 2013, 35: 179–184
Zhu S, Li Y S, Yu C B, Xie L H, Hu X J, Zhang S J, Liao X, Liao X S, Che Z. Effects of planting density and nitrogen application rate on rapeseed yield and nitrogen efficiency. Chin J Oil Crop Sci, 2013, 35: 178–184 (in Chinese with English abstract)
[27]马霓, 李云昌, 胡琼, 李俊, 李光明, 张春雷. 我国南方冬油菜机械化生产农艺研究进展. 中国油料作物学报, 2010, 32: 451–456
Ma N, Li Y C, Hu Q, Li J, Li G M, Zhang C L. Research of agronomic techniques form mechanical production of winter rape (Brassica napus L.). Chin J Oil Crop Sci, 2010, 32: 451–456 (in Chinese with English abstract)
[28] 王玫, 陈洪伟, 王红利, 刘克锋. 独脚金内酯调控植物分枝的研究进展. 园艺学报, 2014, 41: 1924–1934
Wang M, Chen H W, Wang H L, Liu K F. Research progress in regulatory role of strigolactones in shoot branching. Acta Hort Sin, 2014, 41: 1924-1934 (in Chinese with English abstract)
[29] Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Front Plant Sci, 2015, 5: 741
[30] 付三雄, 戚存扣. 甘蓝型油菜含油量的主基因+多基因遗传分析. 江苏农业学报, 2009, 25: 731–736
Fu S X, Qi C K. Major gene plus polygene inheritance of oil content in Brassica napus L. Jiangsu J Agirc Sci, 2009, 25: 731–736 (in Chinese with English abstract)

[1] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[2] Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG,Jun-Jie ZHANG,Wei-Guo HU,Jun LI,Chang-You WANG,Hong ZHANG,Chun-Huan CHEN. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat [J]. Acta Agronomica Sinica, 2020, 46(3): 365-384.
[3] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[4] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
[5] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[6] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[7] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[8] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
[9] Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573.
[10] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[11] WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65.
[12] JIN Yan,Lü Yan-Yan,FU San-Xiong,QI Cun-Kou. Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1964-1972.
[13] QU Cun-Min,LU Kun,LIU Shui-Yan,BU Hai-Dong,FU Fu-You,WANG Rui,XU Xin-Fu,LI Jia-Na. SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1914-1924.
[14] LIN Ting-Ting,WANG Jian-Jun,WANG Li,CHEN Xuan,HOU Xi-Lin,LI Ying. Major Gene Plus Polygene Inheritance Analysis of Vitamin C Content in Non-heading Chinese Cabbage [J]. Acta Agron Sin, 2014, 40(10): 1733-1739.
[15] ZHOU Qing-Yuan,CUI Cui,YIN Tao,CHEN Dong-Liang,ZHANG Zheng-Sheng,LI Jia-Na. Genetic Analysis of Silique Length Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(08): 1493-1500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!