Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (3): 365-384.doi: 10.3724/SP.J.1006.2020.91044


Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat

Song-Feng XIE1,2,*,Wan-Quan JI1,*(),Yao-Yuan ZHANG1,*,Jun-Jie ZHANG1,Wei-Guo HU3,Jun LI4,Chang-You WANG1,Hong ZHANG1,Chun-Huan CHEN1   

  1. 1. College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas / Yangling Sub-centre, National Wheat Improvement Centre, Yangling 712100, Shaanxi, China;
    2. Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Prducts, Ankang 725000, Shaanxi, China;
    3. Wheat Research Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China;
    4. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
  • Received:2019-07-01 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-11
  • Contact: Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG E-mail:jiwanquan2003@126.com
  • Supported by:
    The study was supported by the Key Research and Development Program of China(2016YFD0102004);the Shaanxi Resrarch Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Shaanxi Provincial Agricultural Science and Technology Innovation and Transformation Project(NYKJ-2015-037);the Innovation Capability Support Program Project in Shaanxi Province(2018TD-021);the Innovation Capability Support Program Project in Shaanxi Province(2018PT-31);the National-Local Joint Engineering Laboratory of Se-enriched Food Development (Shaanxi).


The important traits represented by yield per plant are the main target traits in high-yield breeding of wheat, and analysing then the quantitative genetic characteristics will provide a basis for further study on the genetic mechanism. In this study, we selected the winter Pingdong 34 as the female parent (P1) and the Barran as the male parent (P2) to configure the hybrid combination, and applied the main gene + polygene mixed genetic model method to analyse the length and number of tillers in the single generation (P1, P2) RIL7:8, RIL8:9 at four environments in two years genetic model and correlation among yield per plant, 1000-grain weight, plant height, internode length, internode length and number of tillers. There were significant or extremely significant condation among all the traits, except for the 1000-grain weight and number of tillers. The average correlation coefficient between the internodes and the upper leaves of the flag was 0.91 (P ≤ 0.001). The optimal genetic model for yield per plant was four pairs of additive epigenetic gene + polygenic genetic model with the main gene additive effect values of 3.78, 2.89, -6.18, and 0.15, respectively, and the multigene heritability of 86.23%. The optimal genetic model of 1000-grain weight of a mixed genetic model with two pairs of complementary main genes + additive effects. The multi-gene additive effect value was 22.37, the main gene heritability was 66.96%, and the multi-gene heritability was 28.25%. The optimal genetic model of plant height was a mixed genetic model of two pairs of cumulative main genes + additive multigenes. The additive value of the first pair of main genes controlling plant height was 5.15. Additive × additive epistatic interaction value was -9.66, the multigene additive effect value was -9.31, the major gene heritability was 58.57%, and the polygene heritability was 39.71%. The optimal genetic model of the internode length below spike above the flag leaf was the additive-superordinate multi-gene genetic model, and the main gene heritability was 97.65% and 99.14%, respectively. The optimal genetic model of the number of tillers was an additive-superordinate multi-gene mixed genetic model with a genetic rate of 78.89% for primary genes and 19.87% for multiple genes. These traits were mainly dominated by the combination of major gene + polygene in multiple environments. In the process of breeding excellent strains, it is necessary to take into account the important performances adapting to the ecological environment conditions, and further provide a theoretical basis for screening closely linked to target traits markers and promoting molecular marker-assisted selection.

Key words: wheat, yied traits, conrelation analysis, major gene plus polygen, genetic effects

Table 1

Descriptive analysis of optimal linear unbiased prediction of panicle traits in recombinant inbred lines and their parents"

环境Environ. 亲本Parent 重组自交系群体 RIL
Pindong 34
变异系数CV (%) 遗传力 Heritability 偏度系数
单株产量GYP (g)
E1 36.45 5.53 1.18 89.83 24.32 14.41 0.59 0.86 1.02** 1.55**
E2 18.66 6.24 2.03 65.55 23.31 9.93 0.43 0.47 0.66** 1.11**
E3 28.50 15.89 2.85 71.32 25.56 11.03 0.43 0.77 0.66** 0.82**
E4 28.56 24.38 1.10 47.20 16.97 8.00 0.47 0.75 0.48** 0.23**
Average 28.04 13.01 1.79 68.48 22.54 10.84 0.48 0.71 0.705** 0.9275**
千粒重TGW (g)
E1 55.85 26.00 23.25 66.50 45.12 7.43 0.16 0.33 0.09 -0.29
E2 58.40 24.65 24.18 66.17 45.01 7.09 0.16 0.37 -0.08 -0.26
E3 57.08 24.15 18.90 59.70 38.30 7.37 0.19 0.76 -0.10 -0.20
E4 71.20 68.15 11.88 71.20 47.89 8.27 0.17 0.63 -0.25 0.35**
Average 60.63 35.74 19.55 65.89 44.08 7.54 0.17 0.52 -0.08 -0.10
株高 PH (cm)
E1 88.00 86.00 30.00 158.00 96.51 19.09 0.20 0.91 -0.21 -0.07
E2 86.50 90.50 50.80 161.80 108.26 22.05 0.20 0.92 -0.18 -0.39
E3 85.75 99.33 39.25 149.25 102.88 18.74 0.18 0.94 -0.43 0.02
E4 94.67 102.00 33.67 155.00 104.76 20.89 0.20 0.92 -0.35 -0.24
Average 88.73 94.46 38.43 156.01 103.10 20.19 0.20 0.92 -0.29 -0.17
E1 28.00 16.00 3.00 79.00 20.48 7.33 0.36 0.57 1.94** 2.54**
E2 15.75 18.25 6.50 54.00 22.02 5.63 0.26 0.42 1.09** 3.30**
E3 23.00 35.50 9.00 59.00 28.60 7.43 0.26 0.90 0.58** 0.56**
E4 10.00 17.00 3.33 21.00 9.76 2.55 0.26 0.44 0.96** 2.10**
Average 19.19 21.69 5.46 53.25 20.22 5.74 0.28 0.60 1.14** 4.63**
穗下节间长SIL (cm)
E1 36.00 34.00 16.00 66.00 40.40 9.12 0.23 0.89 0.00 -0.17
E2 33.25 33.75 18.60 66.00 40.45 8.54 0.21 0.88 -0.11 -0.20
E3 31.45 32.70 14.23 54.10 35.31 6.42 0.18 0.86 -0.32 0.20*
E4 32.83 33.50 16.83 62.50 39.13 8.27 0.21 0.91 -0.23 -0.24
Average 33.38 33.49 16.42 62.15 38.82 8.09 0.21 0.88 -0.16 -0.10
旗叶上节间长FIL (cm)
E1 13.00 21.00 3.00 46.00 20.19 6.94 0.34 0.87 0.27** 0.18*
E2 11.75 20.00 3.80 42.20 20.16 6.35 0.32 0.89 0.15* 0.14**
E3 9.50 14.65 0.00 30.00 15.39 4.31 0.28 0.59 0.01 0.51**
E4 11.00 17.50 2.50 35.00 18.40 5.58 0.30 0.89 0.06 -0.02
Average 11.31 18.29 2.33 38.30 18.53 5.80 0.31 0.81 0.12* 0.21*


Frequent(column),mixed(solid line,theoretical), and component(dotted line) distributions for wheat panicle-related traits in RILs"

Fig. 2

Bonferroni-corrected genetic correlations for field yield traits with model parameters and a scatter plot matrix of linear fit lines in wheat-recombinant inbred lines (RILs). A, B, C, and D indicate the frequency distribution, correlation and fit curve of yield traits of RILs group in the four environments of Shaanxi Yangling in 2015-2016, Yangling in Shaanxi in 2016-2017, Yuanyang in Henan in 2016-2017, and Guangyuan in 2016-2017, respectively The distribution of each variable is shown on the diagonal. On the bottom of the diagonal, the bivariate scatter plots with a fitted line are displayed. On the top of the diagonal, the value of the correlation plus the significance level are shown as stars. Each significance level is associated with a symbol: no symbol P < 0.1, “*”P < 0.05, “**” P < 0.01, “***” P < 0.001, “****” P < 0.0001."





[1] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry M A J. Prospects of doubling global wheat yields. Food Energy Secur, 2013,2:34-48.
[2] Maddala G S . The use of variance component models in pooling cross section and time series data. Econometrica, 1971,39:341-358.
[3] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 96-102.
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 96-102(in Chinese).
[4] 王建康, 盖钧镒 . 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997,24:432-4401.
Wang J K, Gai J Y . Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny. Acta Genet Sin, 1997,24:4432-4401 (in Chinese with English abstract).
[5] 章元明, 盖钧镒, 王永军 . 利用 P1、P2 和 DH 或 RIL 群体联合分离分析的拓展. 遗传, 2001,23:467-470.
Zhang Y M, Gai J Y, Wang Y J . An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas, 2001,23:467-470 (in Chinese with English abstract).
[6] Gai J Y, Wang J K . Identification and estimation of QTL model and effects. Theor Appl Genet, 1998,97:1162-1168.
[7] Zhang Y M, Gai J Y, Yang Y H . The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res Camb, 2003,81:157-1631.
[8] 李余生, 朱镇, 张亚东, 赵凌, 王才林 . 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008,34:1728-1733.
Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L . Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008,34:1728-1733 (in Chinese with English abstract).
[9] 江建华, 张启武, 洪德林 . 粳稻穗部性状遗传分析. 植物学报, 2010,45:182-188.
Jiang J H, Zhang Q W, Hong D L . Genetic analysis of panicle traits in Oryza sativa ssp. japonica. Chin Bull Bot, 2010,45:182-188 (in Chinese with English abstract).
[10] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu Li, Liu J . Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
[11] 周清元, 崔翠, 阴涛, 陈东亮, 张正圣, 李加纳 . 甘蓝型油菜角果长度的主基因+多基因混合遗传模型. 作物学报, 2014,40:1493-1500.
Zhou Q Y, Cui C, Yin T, Chen D L, Zhang Z S, Li J N . Genetic analysis of silique length using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2014,40:1493-1500 (in Chinese with English abstract).
[12] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣 . 油菜半矮杆新品系 10D130 株型性状的遗传分析. 作物学报, 2013,39:207-215.
Zhou Q Y, Li J Q, Cui C, Bu H D, Ying T, Yan Y H, Li J N, Zhang Z S . Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013,39:207-215 (in Chinese with English abstract).
[13] 丛野, 程勇, 邹崇顺, 张学昆, 王汉中 . 甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析. 作物学报, 2009,35:1462-1467.
Cong Y, Cheng Y, Zou C S, Zhang X K, Wang H Z . Genetic analysis of waterlogging tolerance for germinated seeds of rapeseed (Brassica napus L.) with mixed model of major gene plus polygene. Acta Agron Sin, 2009,35:1462-1467 (in Chinese with English abstract).
[14] 蔡长春, 陈宝元, 傅廷栋, 涂金星 . 甘蓝型油菜开花期和光周期敏感性的遗传分析. 作物学报, 2007,33:345-348.
Cai C C, Chen B Y, Fu T D, Tu J X . Genetic analysis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.). Acta Agron Sin, 2007,33:345-348 (in Chinese with English abstract).
[15] 李英双, 胡丹, 聂蛟, 黄科慧, 张玉珂, 张园莉, 佘恒志, 方小梅, 阮仁武, 易泽林 . 甜荞株高和茎粗的遗传分析. 作物学报, 2018,44:1185-1195.
Li Y S, Hu D, Nie J, Huang K H, Zhang Y K, Zhang Y L, She H Z, Fang X M, Ruan R W, Yi Z L . Genetic analysis of plant height and stem diameter in common buckwheat. Acta Agron Sin, 2018,44:1185-1195 (in Chinese with English abstract).
[16] 曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌 . 黄瓜节间长的主基因+多基因混合遗传模型分析. 农业生物技术学报, 2018,26:205-212.
Cao Q W, Zhang Y N, Wang Y Q, Yang G L, Sun X L, Li L B . Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. J Agric Biotechnol, 2018,26:205-212 (in Chinese with English abstract).
[17] 张允楠, 曹齐卫, 李利斌, 王秀峰, 王永强, 孙小镭 . 黄瓜叶面积的主+多基因混合遗传模型分析. 园艺学报, 2015,42:897-906.
Zhang Y N, Cao Q W, Li L B, Wang X F, Wang Y Q, Sun X L . Genetic analysis of leaf size using mixed major-gene plus polygene inheritance model in Cucumis sativus. Acta Hort Sin, 2015,42:897-906 (in Chinese with English abstract).
[18] 徐小万, 曾莉, 李颖, 罗少波, 王恒明, 田永红 . 辣椒开花期的主基因+多基因遗传分析. 生物数学学报, 2012,27:755-775.
Xu X W, Zeng L, Li Y, Luo S B, Wang H M, Tian Y H . Major gene plus poly-gene inheritance analysis of the flowing time in pepper (Capsicum annuum L.). J Biomathem, 2012,27:755-775 (in Chinese with English abstract).
[19] Cao X W, Cui H M, Li J, Xiong A S, Hou X L, Li Y . Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis. Sci Hort, 2016,203:199-206.
[20] 李立会, 李秀全 . 小麦种质资源描述规程和数据标准. 北京: 中国农业出版社, 2006.
Li L H, Li X Q. Descriptors and Date Standard for Wheat. Beijing: China Agriculture Press, 2006 ( in Chinese)
[21] Choo T M, Reinbergs E . Estimation of the number of genes in doubled haploid populations of barley (Hordeum vulgare). Can J Genet Cytol, 1982,24:337-341.
[22] Gamble E E . Gene effects in corn (Zea may L.): I. Separation and relative importance of gene effects for yield. Plant Sci, 1962,42, 339-348.
[23] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平 . 小麦株高及其构成因素的遗传及相关性分析. 麦类作物学报, 2011,31:604-610.
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P . Genetic and correlation analysis of plant height and its components in wheat. J Triticeae Crops, 2011,31:604-610 (in Chinese with English abstract).
[24] 卢娟, 姚永定, 史华伟, 史雨刚, 王曙光, 孙黛珍 . 小麦产量构成因素相关性状与群体产量的遗传相关分析. 山西农业科学, 2018,46:501-503.
Lu J, Yao Y D, Shi H W, Shi Y G, Wang S G, Sun D Z . Genetic correlation analysis between yield components related traits and population yield in wheat. J Shanxi Agric Sci, 2018,46:501-503 (in Chinese with English abstract).
[25] 杨德龙, 张国宏, 李兴茂, 幸华, 程宏波, 倪胜利, 陈晓平 .小麦 RIL 群体株高和千粒重的抗旱遗传特性研究. 应用生态学报, 2012,23:1569-1576.
Yang D L, Zhang G H, Li X M, Xing H, Cheng H B, Ni S L, Chen X P . Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat. Chin J Appl Ecol, 2012,23:1569-1576 (in Chinese with English abstract).
[26] 王慧茹, 王光达, 昌小平, 杨德龙, 景蕊莲 . 不同水分环境条件下小麦IL群体产量相关性状遗传和关联性分析. 华北农学报, 2013,28(4):53-61.
Wang H R, Wang G D, Chang X P, Yang D L, Jing R L . Association and genetic analysis of yield related traits in introgression lines of wheat in different water environments. Acta Agric Boreali-Sin, 2013,28:53-61 (in Chinese with English abstract).
[27] Kato K, Miura H, Sawada S . Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor APPl Genet, 2000,101:1114-1121.
[28] Law C N, Snape J W, Worland A J . The genetic relationship between height and yield in wheat. Heredity, 1978,40:133-151.
[29] Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q . Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014,33:129-138.
[30] 王培, 李晓林, 杨林, 吴青霞, 杨子博, 白志元, 李立群, 李学军 . 小麦单株穗数的遗传分析及其QTL定位的最优基因型预测. 麦类作物学报, 2012,32:820-827.
Wang P, Li X L, Yang L, Wu Q X, Yang Z B, Bai Z Y, Li L Q, Li X J . Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information. J Triticeae Crops, 2012,32:820-827 (in Chinese with English abstract).
[31] 杜希朋, 闫媛媛, 刘伟华, 高爱农, 张锦鹏, 李秀全, 杨欣明, 车永和, 郭小敏 . 蚂蚱麦×碧玉麦杂交F2代部分农艺性状的遗传分析. 麦类作物学报, 2011,31:624-629.
Du,X P, Yan Y Y,Liu A H,Gao A N,Zhang J P,Li X Q,Yang X M,Che Y H,Guo X M. Genetic analysis on several important agronomic traits in F2 generation of Mazhamai × Biyumai. J Triticeae Crops, 2011,31:624-629 (in Chinese with English abstract).
[32] 朱欣果, 万洪深, 李俊, 郑建敏, 唐宗祥, 杨武云 . 人工合成小麦育种优势的主基因+多基因混合遗传分析, 南京农业大学学报, 2018,41, 625-632
Zhu X G, Wan H S, Li J, Zheng J M, Tang Z X, Yang W Y . Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat. J Nanjing Agric Univ, 2018,41, 625-632 (in Chinese with English abstract).
[33] Khan A S., Khan M R., Khan T M, . Genetic analysis of plant height, grain yield and other traits in wheat (Triticum aestivum L.). Internat J Agric Biol, 2000,2(1):1-4.
[34] Dere S, Yildirim M B . Inheritance of plant height, tiller number per plant, spike height and 1000-kernel weight in an 8×8 diallel cross population of bread wheat. Cereal Res Commun, 2006,34:965-972.
[35] 李斯深, 陈茂学, 王洪刚 . 利用重组自交系(RILs)群体进行质量-数量性状的遗传分析: 遗传模型和小麦产量性状遗传. 作物学报, 2001,27:896-904.
Li S S, Chen M X, Wang H G . Genetic analysis on qualitative-quantitative traits by using populations of recombinant inbred lines (RILs): genetic models and inheritance of yield traits in wheat. Acta Agron Sin, 2001,27:896-904 (in Chinese with English abstract).
[36] 李法计, 常鑫, 王宇娟, 宋全昊, 田芳慧, 孙道杰 . 小麦重组自交系群体9个重要农艺性状的遗传分析. 麦类作物学报, 2013,33:23-28.
Li F J, Chang X, Wang Y J, Song Q H, Tian F H, Sun D J . Genetics analysis of nine important agronomic traits in wheat population of recombinant inbred lines. J Triticeae Crops, 2013,33:23-28 (in Chinese with English abstract).
[37] 毕晓静, 史秀秀, 马守才, 韩芳, 亓佳佳, 李清峰, 王志军, 张改生, 牛娜 . 小麦农艺性状的主基因+多基因遗传分析. 麦类作物学报, 2013,33:630-634.
Bi X J, Shi X X, Ma S C, Han F, Qi J J, Li Q F, Wang Z J, Zhang G S, Niu N . Genetic analysis of agronomic traits related to yield based on major gene plus polygene model in wheat. J Triticeae Crops, 2013,33:630-634.
[38] 陈树林 . 苏麦3号矮杆密穗突变体NAUH164的遗传分析及突变座位的分子标记. 南京农业大学硕士学位论文,江苏南京, 2011.
Chen S L . Genetic Analysis and Mapping of the Mutant Locus of A Dwarf and Compact Spike Mutant NAUH164 from Wheat Variety Sumai 3. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011.
[39] 范平, 詹克慧, 孙建英, 王淑凤, 赵国山 . 小麦主要性状的遗传模型分析. 河南农业大学学报, 1999,33:231-234.
Fan P, Zhan K H, Sun J Y, Wang S F, Zhao G S . Analysis on the genetic models for main characters in wheat. Acta Agric Univ Henanensis, 1999,33(3):231-234 (in Chinese with English abstract).
[40] 蒲定福, 袁代斌, 蒙大庆, 李之凡, 胥岚 . 高产小麦主要性状的遗传模型分析. 西北农业学报, 2001,10(4):41-44.
Pu D F, Yuan D B, Meng D Q, Li Z F, Xu L . Genetic model analysis and parameter estimate on main characters of high-yield wheat. Acta Agric Boreali-Occident Sin, 2001,10(4):41-44 (in Chinese with English abstract).
[41] 卫云宗, 乔蕊清, 谢福来, 刘玲玲, 宁东贤 . 旱地冬小麦主要性状的配合力研究. 华北农学报, 1999,14(3):19-24.
Wei Y Z, Qiao R Q, Xie F L, Liu L L, Ning D X . A study on combining ability of major characters of winter wheat in dryland. Acta Agric Boreali-Sin, 1999,14(3):19-24 (in Chinese with English abstract).
[42] 张铁山, 韩金梅, 韩杰 . 春小麦穗颈遗传特性及其育种价值. 内蒙古农业科技, 2002, ( 2):18-19.
Zhang T S, Han J M, Han J . Genetic characteristics of spring wheat ear and its breeding value. Inner Mongolia Agric Sci Technol, 2002, ( 2):18-19 (in Chinese with English abstract).
[43] 张倩辉, 张晓科, 刘伟华, 李立会, 张锦鹏, 武军, 高爱农, 李秀全, 杨欣明 . 小麦有效分蘖数的遗传分析. 麦类作物学报, 2008,28:573-576.
Zhang Q H, Zhang X K, Liu H W, Li L H, Zhang J P, Wu J, Gao A N, Li X Q, Yang X M . The inheritance for effective tiller emergence in wheat. J Triticeae Crops, 2008,28:573-576 (in Chinese with English abstract).
[44] 闫林 . 大穗小麦西农9814主要性状遗传分析及性状改良研究. 西北农林科技大学博士论文, 陕西杨凌, 2009.
Yan L . Genetic Analysis of Main Traits and Research on Traits Improvement for Big Ears Wheat Xinong 9814. PhD Dissertation of Northwest A&F University, Yangling, Shanxi, China, 2009 (in Chinese with English abstract).
[45] 谢玥, 龙海, 侯永翠, 郑有良 . 小麦寡分蘖材料 H461 分蘖性状的遗传分析, 麦类作物学报, 2006,26(6):21-23.
Xie Y, Long H, Hou Y C, Zheng Y L . Inheritance analysis of correlative characters of aoligoculm wheat line H461. J Triticeae Crops, 2006,26(6):21-23 (in Chinese with English abstract).
[46] 马铮, 霍二伟, 卢兆成, 徐士库 . 杂交水稻主要性状对产量的影响. 山东农业科学, 2006, ( 3):21-23.
Ma Z, Huo E W, Lu Z C, Xu S K . Effect of main characters on yied of hybrid rice. Shandong Agric Sci, 2006, ( 3):21-23 (in Chinese).
[47] 王翠玲, 高海涛, 王书子, 段国辉, 吴少辉, 张学品, 吕树作 . 冬小麦品质与产量性状的遗传分析. 麦类作物学报, 2003,23(3):26-28.
Wang C L, Gao H T, Wang S Z, Duan G H, Wu S H, Zhang X P, Lyu S Z . Genetic analysis of quality and yied characters in winter wheat. J Triticeae Crops, 2003,23(3):26-28 (in Chinese with English abstract).
[48] 丁安明, 崔法, 李君, 赵春华, 王秀芹, 王洪刚 . 小麦单株产量与株高的QTL分析. 中国农业科学, 2011,44:2857-2867.
Ding A M, Cui F, Li J, Zhao C H, Wang X Q, Wang H G . QTL Analysis on grain yield per plant and plant height in wheat. Sci Agric Sin, 2011,44:2857-2867 (in Chinese with English abstract).
[49] Jamali K D, Ali S A . Yield and yield components with relation to plant height in semi-dwarf wheat. Pakistan J Bot, 2008,40:1805-1808.
[50] Kato K, Miura H, Sawada S . Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000,101:1114-1121.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Full text



No Suggested Reading articles found!