Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1493-1500.doi: 10.3724/SP.J.1006.2014.01493

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Analysis of Silique Length Using Mixture Model of Major Gene Plus Polygene in Brassica napus L.

ZHOU Qing-Yuan,CUI Cui,YIN Tao,CHEN Dong-Liang,ZHANG Zheng-Sheng,LI Jia-Na   

  1. College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education / Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China?
  • Received:2013-10-30 Revised:2014-04-17 Online:2014-08-12 Published:2014-05-16
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950

Abstract:

Silique is one of major components for rapeseed yield. Inheritance of silique body length (SBL), valid silique length (VSL) and beak length (BL) in a cross of variety Zhongshuang 11 with long silique (P1) and line 10D130 with short silique (P2) was investigated by the mixed major gene plus polygene inheritance model. The results showed that SBL, VSL and BL in the populations of F2, BCP1, and BCP2 were controlled by the major gene and polygenes. The SBL were dominated by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance-epistasis effects (E-0 model). The heritability values of the major genes of SBL in BCP1, BCP2, and F2 were estimated as 51.10%, 74.23%, and 66.93%, respectively, and the heritability values of the polygene were 29.16%, 17.11%, and 23.96%, respectively. The additive effects of two major genes of SBL were 1.75 and –0.06, and the dominant effects of two major genes were –0.59 and –0.86, respectively. The valid silique length was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model). Heritability values of the major genes for SL in BCP1, BCP2, and F2 generations were estimated as 47.63%, 68.51%, and 79.45%, respectively, and the heritability values of the polygene were 29.40%, 20.89%, and 12.47%, respectively. The additive effects of two major genes were equal (0.34) to there of the cross, but the dominant effects of the two major genes were –0.81 and –0.47, respectively. The beak length was dominated by two major gene with additive effects plus polygenes with additive- dominance effects (E-3 model). Heritability values of the major genes of BL in the cross were 33.71%, 72.75%, and 52.25%, respectively, and the heritability values of the polygene were 40.08%, 5.37%, and 27.60%, respectively. The additive effects of two major genes were 0.20 and –0.20, respectively.

Key words: Brassica napus L., Sileque length, Mixed inheritance modal, Genetic Analysis

[1]Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol, 2005, 137: 1463–1473



[2]Yang P, Shu C, Chen L, Xu J, Wu J, Liu K . Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285–296



[3]Rood S, Major D, Charnetski W. Seasonal changes in 14CO2 assimilation and 14 C translocation in oilseed rape. Field Crops Res, 1984, 8: 341–348



[4]冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250–257



Leng S H, Zhu G R, Deng X L. Study on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250–257 (in Chinese with English abstract)



[5]Bennett E J, Roberts J A, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. New Phytol, 2011, 190: 838–853



[6]丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28–30



Ding X Q. Study on characters of silique and seed in spring rape (B. campestris L.). Oil Crop China, 1996, 18(4): 28–30 (in Chinese with English abstract)



[7]Chay P, Thurling N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization for yield improvement. Plant Breed, 1989, 103: 54–62



[8]Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49



[9]沈熙. 甘蓝型油菜角果长度性状的遗传及QTL定位. 华中农业大学硕士学位论文, 2008



Shen X. Genetic Analysic and Gene Maping of Pod Length Trait in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2008 (in Chinese with English abstract)



[10]危文亮. 甘蓝型油菜长角果变异体的遗传研究. 遗传, 2000, 22: 93–95



Wei W L. Studies of the inheritance of a long-pod mutant in Brassica napus L. Hereditas (Beijing), 2000, 22: 93–95 (in Chinese with English abstract)



[11]王艳惠, 牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析. 遗传, 2006, 28: 1273–1279



Wang Y H, Niu Y Z. Genetic analysis of a specially long pod character in artificially resythesized Brassica napus L. Hereditas (Beijing), 2006, 28: 1273–1279 (in Chinese with English abstract)



[12]王艳惠. 人工合成甘蓝型油菜特长角性状的遗传及分子生物学研究. 四川农业大学博士学位论文, 2009



Wang Y H. Genetic and Molecular Biology Research on the Especially-long Pod of Artificially Resynthesized Rapeseed (Brassica napus L.). PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2009 ((in Chinese with English abstract))



[13]盖钧镒, 章元明, 王健康. 植物数量性状遗传体系. 北京, 科学出版社, 2003



Gai J Y, Zhang Y M, Wang J K. Genetic system of quantitative traits in plants. Beijing. Science Press, 2003 (in Chinese)



[14]代君丽, 崔磊, 刘珂, 宗莹莹, 袁虹霞, 邢小萍, 李洪杰, 李洪连. 小麦品种太空6号对Heterodera avenae郑州群体的抗性遗传分析. 作物学报, 2013, 39: 642–648



Dai J L, Cui L, Liu K, Zong Y Y, Yuan H X, Xing X P, Li H J, Li H L. Genetic analysis of common wheat cultivar Taikong 6 for resistance to Heterodera avenae Zhengzhou population. Acta Agron Sin, 2013, 39: 642–648 (in Chinese with English abstract)



[15]李余生, 朱镇, 张亚东, 赵凌, 王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008, 34: 1728–1733



Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008, 34: 1728–1733 (in Chinese with English abstract)



[16]王建设, 王建康, 朱立宏, 盖钧镒. 水稻主基因-多基因混合遗传控制白叶枯病抗性的基因效应分析. 遗传, 2000, 27: 34–38



Wang J S, Wang J K, Zhu L H, Cai J Y. Major-polygene effect analysis of resistance to bacterial blight (Xanthomonas campestris pv. oryzae) in rice. Hereditas (Beijing), 2000, 27: 34–38 (in Chinese with English abstract)



[17]Zheng W J, Liu Z H, Zhao J M, Chen W F. Genetic analysis of stripe disease resistance in rice restorer line c224 using major gene plus polygene mixed effect model. Rice Sci, 2012, 19: 202–206



[18]刘莹, 盖钧镒, 吕慧能, 王永军, 陈受宜. 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位. 遗传学报, 2005, 32: 855–863



Liu Y, Gai J Y, Lu H N, Wang Y J, Chen S Y. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.). Acta Genet Sin, 2005, 32: 855–863 (in Chinese with English abstract)



[19]Zhang X, Li C Q, Wang X Y, Chen G P, Zhang J B, Zhou R Y. Genetic analysis of cryotolerance in cotton during the overwintering period using mixed model of major gene and polygene. J Integr Agric, 2012, 11: 537–544



[20]Zhang X Y, Han SY, Tang F S, Xu J, Liu H, Yan M, Dong W Z, Huang B Y, Zhu S J. Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Afr J Biotechnol, 2011, 10: 7126–7130



[21]唐慧珣, 司龙亭. 黄瓜种子休眠性的数量遗传分析. 园艺学报, 2013, 40: 549–554



Tang H X, Si L T. Quantitative genetic analysis of seed dormancy in cucumber. Acta Hortic Sin, 2013, 40: 549–554 (in Chinese with English abstract)



[22]戚存扣, 盖钧镒, 章元明. 甘蓝型油菜芥酸含量的主基因+多基因遗传. 遗传学报, 2001, 28: 182–187



Qi C K, Gai J Y, Zhang Y M. Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L. Acta Genet Sin, 2001, 28: 182–187 (in Chinese with English abstract)



[23]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33: 171–180



[24]张洁夫, 戚存扣, 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲. 甘蓝型油菜含油量的遗传与QTL定位. 作物学报, 2007, 33: 1495–1501



Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. Inheritance and QTL identification of oil content in rapeseed (Brassica napus L.). Acta Agron Sin, 2007, 33: 1495–1501 (in Chinese with English abstract)



[25]顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376–381



Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34: 376–381 (in Chinese with English abstract)



[26]周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣. 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013, 39: 207–215



Zhou Q Y, Li J Q, Cui C, Bu H D, Yin T, Yan Y H, Li J N, Zhang Z S. Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013, 39: 1–19 (in Chinese with English abstract)



[27]戚存扣, 盖钧镒, 傅寿仲, 浦惠明, 张洁夫, 陈新军, 高建琴. 甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析.作物学报, 2004, 30: 1274–1277



Qi C K, Gai J Y, Fu S Z, Pu H M, Zhang J F, Chen X J, Gao J Q. Analysis of genetic system of 1000 seed weight in Brassica napus L. Acta Agron Sin, 2004, 30: 1274–1277 (in Chinese with English abstract)



[28]Zhang L W, Liu P W, Hong D F, Huang A Q, Li S P, He Q B, Yang G S. Inheritance of seeds per silique in Brassica napus L. using joint segregation analysis. Field Crops Res, 2010, 116: 58–67



[29]田露申, 牛应泽, 余青青, 郭世星, 柳丽. 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009, 42: 3987–3995



Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009, 42: 3987–3995 (in Chinese with English abstract)



[30]周清元. 甘蓝型油菜新种质资源创建及其株型性状遗传分析. 西南大学博士学位论文, 2009



Zhou Q Y. Study on Germplasm Creation of Brassica napus L. and Genetic Analysis of Plant-type Characters. PhD Dissertation of Southwest University, Chongqing, China, 2009 (in Chinese with English abstract)



[31]Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157–163



[32]Akaike H. On entropy maximum principles. In: Krishnaiag G, ed. Applications of Statistics. Amsterdam, Netherlands: North-Holland Publishing, 1977. pp 27–41



[33]王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜. 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008, 41: 1274–1282



Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of tofu and soymilk output in soybean. Sci Agric Sin, 2008, 41: 1274–1282 (in Chinese with English abstract)

[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[5] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[6] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[7] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[8] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[13] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[14] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
[15] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!