Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1649-1655.doi: 10.3724/SP.J.1006.2019.93009
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Xiao-Juan1,PAN Zhen-Yuan2,LIU Min2,LIU Zhong-Xiang1,ZHOU Yu-Qian1,HE Hai-Jun1,QIU Fa-Zhan2,*()
[1] | Coen E S, Meyerowitz E M . The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37. |
[2] | Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F . B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000,405:200-203. |
[3] | Bowman J L, Smyth D R, Meyerowitz E M . Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991,112:1-20. |
[4] | Honma T, Goto K . Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001 409:525-529. |
[5] | Schmidt R J, Ambrose B A . The blooming of grass flower development. Curr Opin Plant Biol, 1998,1:60-67. |
[6] | Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J . Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000,5:569-579. |
[7] | Moore M J, Sharp P A . Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature, 1993,365:364-368. |
[8] | Simpson G F W . Splicing of precursors to mRNA in higher plants: Mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol, 1996,32:1-41. |
[9] | Robberson B L, Cote G J, Berget S M . Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol, 1990,10:84. |
[10] | Collins L, Penny D . Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Investigating the intron recognition mechanism in eukaryotes. Mol Biol Evol, 2006,23:901-910. |
[11] | Nakai K, Sakamoto H . Construction of a novel database containing aberrant splicing mutations of mammalian genes, Gene, 1994,141:171-177. |
[12] | Alvarez C J, Wise J A . Activation of a cryptic 5 splice site by U1 snRNA. RNA, 2001,7:342-350. |
[13] | Carmel I, Tal S, Vig I, Ast G . Comparative analysis detects dependencies among the 5 splice-site positions. RNA, 2004,10:828-840. |
[14] | Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832. |
[15] | Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R . The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006,45:264-274. |
[16] | 王关林, 方宏筠 . 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744. |
Wang G L, Fang H J . Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744(in Chinese) | |
[17] | Takagi H1, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183. |
[18] | Wenger W J, Schwartz K, Sherlock G . Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet, 2010,6:e1000942. |
[19] | Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z . Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant J, 2017,91:132-144. |
[20] | Zhao Y, Zhang Y, Wang L, Wang X, Xu W, Gao X, Liu B . Mapping and functional analysis of a maize silkless mutant sk-A7110. Front Plant Sci, 2018,9:1227. |
[21] | Strable J, Wallace J G . Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017,29:1622-1641. |
[22] | Thi Tran H T, Takeshima Y, Surono A, Yagi M, Wada H, Matsuo M . A G- to -A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Mol Genet Metab, 2005,85:213-219. |
[23] | Jap T S, Wu Y C, Tso Y C, Chiu C Y . A novel mutation in the intron 1 splice donor site of the cholesterol ester transfer protein (CETP) gene as a cause of hyperalphalipoproteinemia. Metabolism, 2002,51:394-397. |
[24] | Hirano H Y, Eiguchi M, Sano Y . A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol, 1998,15:978-987. |
[25] | Lal S, Choi J H, Shaw J R, Hannah L C . A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol, 1999,121:411-418. |
[26] | Kramer E M, Dorit, R L, Irish V F . Molecular evolution of genes controlling petal and stamen development: divergence within the APETALA3 and PISTILLATA MADS box gene lineages. Genetics, 1998,149:765-783. |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[6] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[7] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[8] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[9] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[10] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[11] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[12] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[13] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[14] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[15] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
|