Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1649-1655.doi: 10.3724/SP.J.1006.2019.93009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize

WANG Xiao-Juan1,PAN Zhen-Yuan2,LIU Min2,LIU Zhong-Xiang1,ZHOU Yu-Qian1,HE Hai-Jun1,QIU Fa-Zhan2,*()   

  1. 1 Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
  • Received:2019-02-26 Accepted:2019-05-12 Online:2019-11-12 Published:2019-06-03
  • Contact: Fa-Zhan QIU E-mail:qiufazhan@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD0100202-3)

Abstract:

We identified a new maize male sterile mutant in early experiment, designated as msm-6. This mutant characters were steadily inherited and genetically regulated by a single recessive gene. An F2 population was developed by crossing B73 inbred line to msm-6, and four SSR markers (C6-24, C6-30, C6-34, and C6-40) closely linked to this locus were identified by BSA (Bulked Segregant Analysis) method. The 444 F2 individuals were used to map the target gene in an interval from 68.5 to 98.1 Mb between markers C6-24 and C6-34 on chromosome 6. Using genomic sequence database, we found that male sterile mutant gene Silky1 was located in this mapping region. Silky1 encodes a B function MADS box protein of ABCD model for floral organ establishment. The mutation of Silky1 led to sterile stamen and more silks of the ear. By crossing heterozygous +/silky1-mum3 plants to homozygous msm-6/msm-6 plants, we found a 1:1 segregation ratio for normal to male sterile plants. Genomic and cDNA sequences of msm-6 disclosed a single-nucleotide change from G to C at the first position of intron 6, which resulted in exon 6 skipping, producing aberrant mRNAs without exon 6. So msm-6 is a new allele mutant of Silky1, which is different from silky1-mum2, silky1-mum3, and silky1-mum4 caused by the insertion of mutator transposons. The identification of msm-6 provides not only abundant experimental materials for the study of the floral organ determination in maize, but also important evidence for the conservation of splicing sites in RNA processing.

Key words: maize, male sterile, genetic analysis, silky1, gene mapping, allelic mutant

Table 1

Primers used for Silky1"

引物名称
Primer
序列
Sequence (5°-3°)
用途
Use
Silky1_F1 TCTGTCGCCGAGTATTGGTAT Silky1 gene
Silky1_R1 CGCGTTTCCAATCAATCC Silky1 gene
Silky1_F2 GAAGCCAAAACCGTGCTAAC Silky1 gene
Silky1_R2 CGGATCCATCCCTCGTAGTA Silky1 gene
Silky1_F3 TGGTCTGCGCACAGAGATTA Silky1 gene
Silky1_R3 AGCTCTCAAACTTGCCCAAT Silky1 gene
Silky1_F4 CAGCACCGTTGGATGTAGAG Silky1 gene
Silky1_R4 GATGAGCTGGATGCAACGTA Silky1 gene
Silky1_F5 GAGGTATGGAAATGGGACTCA Silky1 gene
Silky1_R5 TGTTTTTCGGGCAAAAATTG Silky1 gene
Silky1-cDNA_F TCCCAACTCCCAAGTCCCAT Silky1 cDNA
Silky1-cDNA_R GACGATGCATGAGCGAACTA Silky1 cDNA
silky1-mum3_F TTGTCCTTGCTTGCTTCCTT silky1-mum3
silky1-mum3_R CGGATCCATCCCTCGTAGTA silky1-mum3
TIR6 AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC silky1-mum3

Fig. 1

Tassel and ear phenotype of msm-6 mutant A: Tassel of WT (up) and msm-6 (down); B: Ear of WT (left) and msm-6 (right); C: Male flower of WT (left) and msm-6 (right); D: Female flower of WT (left) and msm-6 (right). Bar = 5 cm in Fig. A; bar = 3 cm in Fig. B; bar = 3 mm in Fig. C; bar = 3 cm in Fig. D."

Table 2

Chi-square test of the F2 population"

群体
Population
观察值Observations 期望值Expectations 卡方检验
Chi-square
野生型WT 突变体Mutant 野生型WT 突变体Mutant
msm-6 × 黄早4 F2 140 48 141 47 0.87
msm-6 × B73 F2 335 109 333 111 0.83

Fig. 2

Linkage markers analysis with msm-6 mutation loci via BSA"

Table 3

Information and exchange frequency between linkage markers and mutation sites"

标记Primer 左引物序列
Left sequence (5°-3°)
右引物序列
Right primer sequence (5°-3°)
物理位置
Physical location
交换频率
Exchange frequency
C6-24 ATTCGATCTAGGGTTTGGGTTCAG GATGCAGTAGCATGCTGGATGTAG 68,453,519 0.045
C6-30 GGAGGAGTACGGCTTCGAG AAGTGGTTGCTGTTGTGGTG 87,429,100 0
C6-34 CTGATCGTGGATATCCCCTCC GACTCGAAGCCAAAACCAACTC 98,078,061 0.011
C6-40 CGCTGAGGCTTAAGATGGTGTT AACGCCTTTACGAGCACGAAC 107,626,979 0.034

Table 4

Genotype and phenotype of the recombinant plant"

标记Marker 单株数
Plant
number
表型
Phenotype
C6-24 C6-30 C6-34 C6-40
H B B B 12 突变体Mutant
B B H H 3 突变体Mutant
B B B H 8 突变体Mutant
H H H B 7 野生型WT
H H B B 2 野生型WT
B H H H 8 野生型WT

Fig. 3

Allelism test of msm-6 and silky1 A: The wild-type plant from msm-6/msm-6×+/silky1-mum3; B: The mutant plant from msm-6/msm-6×+/silky1-mum3."

Fig. 4

Identification of msm-6 mutation sites. A: The sequence analysis of WT and msm-6; The arrow indicates the mutation site. B: Gene structure of Silky1 and mutation site of two mutants."

Fig. 5

Loss of exon 6 of Silky1 transcript in msm-6 mutant A: PCR product of Silky1 transcript between WT and msm-6; B: The sequence analysis of Silky1 transcript between WT and msm-6."

[1] Coen E S, Meyerowitz E M . The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37.
[2] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F . B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000,405:200-203.
[3] Bowman J L, Smyth D R, Meyerowitz E M . Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991,112:1-20.
[4] Honma T, Goto K . Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001 409:525-529.
[5] Schmidt R J, Ambrose B A . The blooming of grass flower development. Curr Opin Plant Biol, 1998,1:60-67.
[6] Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J . Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000,5:569-579.
[7] Moore M J, Sharp P A . Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature, 1993,365:364-368.
[8] Simpson G F W . Splicing of precursors to mRNA in higher plants: Mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol, 1996,32:1-41.
[9] Robberson B L, Cote G J, Berget S M . Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol, 1990,10:84.
[10] Collins L, Penny D . Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Investigating the intron recognition mechanism in eukaryotes. Mol Biol Evol, 2006,23:901-910.
[11] Nakai K, Sakamoto H . Construction of a novel database containing aberrant splicing mutations of mammalian genes, Gene, 1994,141:171-177.
[12] Alvarez C J, Wise J A . Activation of a cryptic 5 splice site by U1 snRNA. RNA, 2001,7:342-350.
[13] Carmel I, Tal S, Vig I, Ast G . Comparative analysis detects dependencies among the 5 splice-site positions. RNA, 2004,10:828-840.
[14] Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
[15] Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R . The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006,45:264-274.
[16] 王关林, 方宏筠 . 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L, Fang H J . Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744(in Chinese)
[17] Takagi H1, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
[18] Wenger W J, Schwartz K, Sherlock G . Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet, 2010,6:e1000942.
[19] Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z . Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant J, 2017,91:132-144.
[20] Zhao Y, Zhang Y, Wang L, Wang X, Xu W, Gao X, Liu B . Mapping and functional analysis of a maize silkless mutant sk-A7110. Front Plant Sci, 2018,9:1227.
[21] Strable J, Wallace J G . Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017,29:1622-1641.
[22] Thi Tran H T, Takeshima Y, Surono A, Yagi M, Wada H, Matsuo M . A G- to -A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Mol Genet Metab, 2005,85:213-219.
[23] Jap T S, Wu Y C, Tso Y C, Chiu C Y . A novel mutation in the intron 1 splice donor site of the cholesterol ester transfer protein (CETP) gene as a cause of hyperalphalipoproteinemia. Metabolism, 2002,51:394-397.
[24] Hirano H Y, Eiguchi M, Sano Y . A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol, 1998,15:978-987.
[25] Lal S, Choi J H, Shaw J R, Hannah L C . A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol, 1999,121:411-418.
[26] Kramer E M, Dorit, R L, Irish V F . Molecular evolution of genes controlling petal and stamen development: divergence within the APETALA3 and PISTILLATA MADS box gene lineages. Genetics, 1998,149:765-783.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[15] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!