Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1638-1648.doi: 10.3724/SP.J.1006.2019.94003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular mechanism of stearoyl-ACP desaturase gene FAB2 expression in peanut

LIU Hao,LU Qing,LI Hai-Fen,LI Shao-Xiong,CHEN Xiao-Ping,LIANG Xuan-Qiang(),HONG Yan-Bin()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Science / Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
  • Received:2019-01-02 Accepted:2019-05-12 Online:2019-11-12 Published:2019-05-30
  • Contact: Xuan-Qiang LIANG,Yan-Bin HONG E-mail:liangxuanqiang@gdaas.cn;hongyanbin@gdaas.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771841);This study was supported by the National Natural Science Foundation of China(31801401);the Natural Science Foundation of Guangdong Province(2017A030311007);the National Key Research and Development Program(2018YFD0201009-02);Excellent PhD Program of Guangdong Academy of Agricultural Science

Abstract:

Stearoyl-ACP desaturase, encoded by FAB2, and located on the upstream of oleic acid biosynthesis pathway, modulates the conversion of stearic acid (C18:0) into oleic acid (C18:1). The expression of FAB2 was increased at the early stage of seed development in high-oleic variety Kainong 176, but over-accumulated oleic acid repressed the FAB2 expression at the period of seed maturation. An F2 hybrid population was constructed using Kainong 176 and Kainong 70, showing that the content of oleic acid up to 60% directly repressed the FAB2 expression on the whole. The activity of peroxidase (POD) and content of ROS were increased at the early stage of seed development with the oleic acid gradual accumulation, but decreased at the maturation stage. Subcellular localization analysis indicated that FAB2 and FAD2 were located on chloroplast and endoplasmic reticulum, respectively. Encoding sequence polymorphism analysis of FAB2 suggested that amino acid deficient at the N-terminal of FAB2 protein sequence probably induced the high content of stearic acid in peanut. Furthermore, the promotor sequence of FAB2 contained multiple AT-rich region, and possessed the light responsive, hormone regulation, and transcription factor binding site cis-regulating elements. Taken together, this study found that over-accumulated oleic acid activated the POD-induced ROS robust pathway, and then regulated the expression of FAB2 by unknown transcription factor in nucleus. The results extend the knowledge of FAB2 function, and provide a relevant theoretical guidance in future peanut breeding for high oleic acid.

Key words: peanut, high oleic acid, FAB2, ROS, feedback regulation

Fig. 1

Oleic acid accumulation feedback regulates the expression level of FAB2 in peanut A: schematic diagram of oleic acid synthesis; B: photograph of Kainong 176 and Kainong 70; C: photograph of the six stages in the developing seeds; D: expression level of FAB2 during seeds development in the high- and normal-oleic varieties; E: contents of oleic acid and linoleic acid in Kainong 176 and Kainong 70; F: relative content changes of oleic acid and linoleic acid during seed development in Kainong 176 and Kainong 70."

Fig. 2

Oleic acid accumulated threshold value for repression of FAB2 expression in Peanut A: contents of oleic acid and linoleic acid in the individual plant of F2 population. OA: oleic acid; LOA: linoleic acid. B: relative expression of FAB2 in the individual plant of F2 population. F2-25 as the control, bar value represented three independent replications."

Fig. 3

Changed of POD activity and H2O2 content A: changes of POD activity; B: changes of H2O2 content; ** P < 0.01, * P < 0.05."

Fig. 4

Subcellular localization of FAB2 and FAD2"

Table 1

Agronomic trait investigation of germplasm resources"

花生品种
Peanut variety
蛋白质含量
Protein content
(%)
脂肪含量
Fatty acid content
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
硬脂酸
Stearic acid
(%)
植物学类型
Botanical classification
冀甜 Jitian 24.10 42.04 30.28 44.87 4.28 珍珠豆型 Spanish type
汕油523 Shanyou 523 25.46 51.98 26.48 46.90 3.47 珍珠豆型 Spanish type
贺油11 Heyou 11 25.11 50.47 29.90 44.69 3.09 珍珠豆型 Spanish type
粤油18 Yueyou 18 26.03 51.24 22.04 51.34 3.62 珍珠豆型 Spanish type
徐花13 Xuhua 13 25.89 52.02 39.61 37.76 3.73 珍珠豆型 Spanish type
湛油12号 Zhanyou 12 20.98 55.68 33.59 42.77 2.39 珍珠豆型 Spanish type
花育30 Huayu 30 24.05 52.51 36.04 40.89 3.78 珍珠豆型 Spanish type
粤北种 Yuebeizhong 44.95 26.27 31.76 46.50 2.98 珍珠豆型 Spanish type
ICGV87123 25.73 48.86 29.46 44.89 2.32 珍珠豆型 Spanish type
粤油35 Yueyou 35 21.87 49.91 39.66 39.08 0.88 珍珠豆型 Spanish type
小粒种 Xiaolizhong 24.12 53.45 40.54 37.16 0.92 珍珠豆型 Spanish type
G40423 30.13 50.03 36.64 41.70 2.09 珍珠豆型 Spanish type
湛油1号 Zhanyou 1 29.88 46.76 28.99 43.87 3.74 珍珠豆型 Spanish type
闽花6号 Minhua 6 24.16 51.64 32.94 43.06 2.84 珍珠豆型 Spanish type
狮头企 Shitouqi 28.22 49.53 28.32 43.99 3.54 珍珠豆型 Spanish type
大明勾鼻 Daminggoubi 28.37 46.47 17.16 52.16 4.88 珍珠豆型 Spanish type
大罗大粒 Daluodali 46.42 23.75 30.61 47.88 2.22 普通型 Normal type
仲恺花1号 Zhongkaihua 1 22.81 52.10 31.10 45.22 1.95 珍珠豆型 Spanish type
宛花8908 Wanhua 8908 22.97 53.39 34.66 40.38 3.24 珍珠豆型 Spanish type
粤油3粒白 Yueyou 3 libai 25.45 48.53 41.38 37.20 0.94 珍珠豆型 Spanish type
文摘墩 Wenzhandun 28.08 48.88 47.66 34.59 0.30 珍珠豆型 Spanish type
ICGV92267 23.25 53.00 46.26 29.66 2.05 珍珠豆型 Spanish type
白沙1016 Baisha 1016 25.24 51.67 44.60 32.11 3.65 珍珠豆型 Spanish type
早花生1 Zaohuasheng 1 42.64 27.90 33.71 45.73 2.48 普通型 Normal type
西藏红 Xizanghong 26.01 51.18 34.15 41.31 2.50 珍珠豆型 Spanish type
花生品种
Peanut variety
蛋白质含量
Protein content
(%)
脂肪含量
Fatty acid content
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
硬脂酸
Stearic acid
(%)
植物学类型
Botanical classification
狮选3号 Shixuan 3 30.32 47.70 19.26 51.07 4.26 珍珠豆型 Spanish type
HZ-152 24.11 40.90 15.49 53.25 5.12 珍珠豆型 Spanish type
蚂花2号 Mahua 2 27.09 51.04 31.05 43.64 2.62 珍珠豆型 Spanish type
汕油3号 Shanyou 3 45.69 25.08 35.41 45.52 1.78 珍珠豆型 Spanish type
仲恺花2号 Zhongkaihua 2 25.46 49.71 36.82 42.34 1.95 珍珠豆型 Spanish type
阳江铺地毡 Yangjiangpudizhan 43.61 25.65 37.56 42.33 2.57 珍珠豆型 Spanish type

Fig. 5

Phylogenetic of FAB2 protein in different peanut germplasm"

Fig. 6

Multiple alignment of FAB2 protein sequence in different peanut germplasm"

Table 2

Conserved elements in the promotor sequence of FAB2"

保守元件
Conversed elements
结合序列
Binding sequence
功能
Function
ABRE ACGTG Involved in the abscisic acid responsiveness
ARE AAACCA cis-acting regulatory element essential for the anaerobic induction
AT-rich sequence TAAAATACT Element for maximal elicitor-mediated activation
AT-TATA-box TATATA Transcription initiation
AuxRR-core GGTCCAT cis-acting regulatory element involved in auxin responsiveness
Box-4 ATTAAT Part of a conserved DNA module involved in light responsiveness
CAAT-box CAAT Common cis-acting element in promoter and enhancer regions
CGTCA-motif CGTCA cis-acting regulatory element involved in the MeJA-responsiveness
G-Box CACGTT cis-acting regulatory element involved in light responsiveness
GA-motif ATAGATAA Part of a light responsive element
GATA-motif AAGATAAGATT Part of a light responsive element
GC-motif CCCCCG Enhancer-like element involved in anoxic specific inducibility
GT1-motif GGTTAA Light responsive element
MRE AACCTAA MYB binding site involved in light responsiveness
MSA-like TCAAACGGT cis-acting element involved in cell cycle regulation
MYB TACCT MYB transcription factor binding site
MYC CATTG MYC transcription factor binding site
O2-site GATGATGTGG cis-acting regulatory element involved in zein metabolism regulation
P-box CCTTTTG Gibberellin-responsive element
TC-rich repeats ATTCTCTAAC cis-acting element involved in defense and stress responsiveness
TCCC-motif TCTCCCT Part of a light responsive element
TCT-motif TCTTAC Part of a light responsive element
TGA-element AACGAC Auxin-responsive element
TGACG-motif TGACG cis-acting regulatory element involved in the MeJA-responsiveness
WRE3 CCACT WRE transcription factor binding site
WUN-motif AAATTTCTT Wun transcription factor binding site
chs-CMA1a TTACTTAA Part of a light responsive element
as-1 TGACG As transcription factor binding site

Fig. 7

A proposed model of oleic acid regulating FAB2 expression A: schematic diagram of AT-rich region in FAB2 promotor sequence; B: a proposed putative model of oleic acid feedback regulating FAB2 expression."

[1] 鲁清, 李少雄, 陈小平, 周桂元, 洪彦彬, 李海芬, 梁炫强 . 我国南方产区花生育种现状、存在问题及育种建议. 中国油料作物学报, 2017,39:556-566.
Lu Q, Li S X, Chen X P, Zhou G Y, Hong Y B, Li H F, Liang X Q . Current situation, problems and suggestions of peanut breeding in southern china. Chin J Oil Crop Sci, 2017,39:556-566 (in Chinese with English abstract).
[2] Gupta K, Kayam G, Faigenboim-Doron A, Clevenger J, Ozias-Akins P, Hovav R . Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Plant Sci, 2016,248:116-127.
[3] Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria H A . Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Crit Rev Food Sci Nutr, 2014,54:1562-1575.
[4] Isleib T G, Pattee H E, Sanders T H, Hendrix K W, Dean L O . Compositional and sensory comparisons between normal- and high-oleic peanuts. J Agric Food Chem, 2006,54:1759-1763.
[5] Dar A A, Choudhury A R, Kancharla P K, Arumugam N . The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci, 2017,8:1789. doi: 10.3389/fpls.2017.01789.
[6] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A . High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
[7] 刘芳, 王积军, 汤松 . 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017,33(1):14-15.
Liu F, Wang J J, Tang S . High-oleic peanut variety cultivation and popularized application in china. China Agric Technol Extension, 2017,33(1):14-15 (in Chinese with English abstract).
[8] Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S . Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep, 2011,30:1393-1404.
[9] Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P . The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007,63:257-271.
[10] Mandal M K, Chandra-Shekara A C, Jeong R D, Yu K, Zhu S, Chanda B, Navarre D, Kachroo A, Kachroo P . Oleic acid- dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis. Plant Cell, 2012,24:1654-1674.
[11] Shi J, Cao Y, Fan X R, Li M, Wang Y, Ming F . A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breed, 2012,29:743-757.
[12] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H . Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009,22:820-829.
[13] Song N, Hu Z, Li Y, Li C, Peng F, Yao Y, Peng H, Ni Z, Xie C, Sun Q . Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene, 2013,524:220-227.
[14] Chi X, Zhang Z, Chen N, Zhang X, Wang M, Chen M, Wang T, Pan L, Chen J, Yang Z, Guan X, Yu S . Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017,12:e189759.
[15] Liu H, Li H, Gu J, Deng L, Ren L, Hong Y, Lu Q, Chen X, Liang X . Identification of the candidate proteins related to oleic acid accumulation during peanut (Arachis hypogaea L.) seed development through comparative proteome analysis. Int J Mol Sci, 2018, 19 (4). pii: E1235. doi: 10.3390/ijms19041235.
[16] Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X . TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut(Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol, 2018,97:177-185.
[17] Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S . Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front Plant Sci, 2018,9:7. doi: 10.3389/fpls.2018.00007.
[18] Zhao J, Favero D S, Qiu J, Roalson E H, Neff M M . Insights into the evolution and diversification of the AT-hook motif nuclear localized gene family in land plants. BMC Plant Biol, 2014,14:266. doi: 10.1186/s12870-014-0266-7.
[19] Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp S J, Ozias-Akins P, Varshney R K, Liang X . Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J, 2013,11:115-127.
[20] Grevengoed T J, Klett E L, Coleman R A . Acyl-CoA metabolism and partitioning. Annu Rev Nutr, 2014,34:1-30.
[21] Yang W, Dong R, Liu L, Hu Z, Li J, Wang Y, Ding X, Chu Z . A novel mutant allele of SSI2 confers a better balance between disease resistance and plant growth inhibition on Arabidopsis thaliana. BMC Plant Biol, 2016,16:208. doi: 10.1186/s12870-016-0898-x.
[22] Theodoulou F L, Eastmond P J . Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol, 2012,15:322-328.
[23] Kao Y T, Gonzalez K L, Bartel B . Peroxisome function, biogenesis, and dynamics in plants. Plant Physiol, 2018,176:162-177.
[24] Wasternack C, Song S . Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot, 2017,68:1303-1321.
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[7] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[10] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[11] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[12] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[13] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[14] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[15] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!