[1] |
Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260-20264.
|
[2] |
张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉 . 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283.
|
|
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract).
|
[3] |
Zeng D L, Tian Z X, Rao Y C, Dong G J, Yang Y L, Huang L C, Leng Y J, Xu J, Sun C, Zhang G H, Hu J, Zhu L, Gao Z Y, Hu X M, Guo L B, Xiong G S, Wang Y H, Li J Y, Qian Q . Rational design of high-yield and superior-quality rice. Nat Plants, 2017,3:17031.
|
[4] |
Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G . The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016,196:702-711.
|
[5] |
Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S H, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y . Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009,106:21760-21765.
|
[6] |
Mohapatra D, Bal S . Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng, 2006,73:253-259.
|
[7] |
贺晓鹏, 朱昌兰, 刘玲珑, 江玲, 张文伟, 刘宜柏, 万建民 . 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36:276-284.
|
|
He X P, Zhu C L, Liu L L, Jiang L, Zhang W W, Liu Y B, Wan J M . Difference of amylopectin structure among various rice genotypes differing in grain qualities and tts relation to starch physicochemical properties. Acta Agron Sin, 2010,36:276-284 (in Chinese with English abstract).
|
[8] |
Li H Y, Gilbert R G . Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohyd Polym, 2018,195:9-17.
|
[9] |
Tao K Y, Li C, Yu W W, Gilbert R G, Li E P . How amylose molecular fine structure of rice starch affects functional properties. Carbohyd Polym, 2019,204:24-31.
|
[10] |
朱霁晖, 张昌泉, 顾铭洪, 刘巧泉 . 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015,29:431-438.
|
|
Zhu J H, Zhang C Q, Gu M H, Liu Q Q . Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015,29:431-438 (in Chinese with English abstract).
|
[11] |
Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M . Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J, 2010,14:459-465.
|
[12] |
Isshiki M, Morino K, Nakajima M, Okagaki R J, Wessler S R, Izawa T, Shimamoto K . A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant J, 1998,15:133-138.
|
[13] |
Sreenivasulu N, Butardo V M J, Misra G, Cuevas R P, Anacleto R, Kavi Kishor P B . Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot, 2015,66:1737-1748.
|
[14] |
Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y . Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet, 2008,116:979-989.
|
[15] |
Xiang X C, Kang C F, Xu S J, Yang B W . Combined effects of Wx and SSIIa haplotypes on rice starch physicochemical properties. J Sci Food Agric, 2017,97:1229-1234.
|
[16] |
Yang B W, Xu S J, Xu L, You H, Xiang X C . Effects of Wx and its interaction with SSIII-2 on rice eating and cooking qualities. Front Plant Sci, 2018,9:456.
|
[17] |
Umemoto T, Horibata T, Aoki N, Hiratsuka M, Yano M, Inouchi N . Effects of variations in starch synthase on starch properties and eating quality of rice. Plant Prod Sci, 2008,11:472-480.
|
[18] |
Cao X M, Sun H Y, Wang C G, Ren X J, Liu H F, Zhang Z J . Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice. J Sci Food Agric, 2017,98:2332-2340.
|
[19] |
Tian Z X, Yan C J, Qian Q, Yan S, Xie H L, Wang F, Xu J F, Liu G F, Wang Y H, Liu Q Q, Tang S Z, Li J Y, Gu M H . Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Chin Sci Bull, 2010,55:3768-3777.
|
[20] |
Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
|
[21] |
刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 . 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998,24:259-271.
|
|
Liu Q Q, Zhang J L, Wang Z M, Hong M M, Gu M H . A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice(Oryza sativa L.). Acta Phytophysiol Sin, 1998,24:259-271 (in Chinese with English abstract).
|
[22] |
Zhang C Q, Zhu L J, Shao K, Gu M M, Liu Q Q . Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics. J Sci Food Agric, 2013,93:1543-1551.
|
[23] |
Liu D R, Wang W, Cai X L . Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.). Plant Biotechnol J, 2015,12:1297-1307.
|
[24] |
舒庆尧, 吴殿星, 夏英武, 高明尉 , Anna M C. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31:25-29.
|
|
Shu Q Y, Wu D X, Xia Y W, Gao M W, Anna M C . Relationship between RVA profile characteristics of rice starch and edible quality. Sci Agric Sin, 1998,31:25-29 (in Chinese with English abstract).
|
[25] |
Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q . Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 2017,65:2222.
|
[26] |
Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X . Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohyd Polym, 2015,125:35-44.
|
[27] |
Cooke D, Gidley M J . Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohyd Polym, 1992,227:103-112.
|
[28] |
Sevenou O, Hill S E, Farhat I A, Mitchell J R . Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002,31:79-85.
|
[29] |
Chen M J, Liu G F, Yu H, Wang B, Li J Y . Towards molecular design of rice plant architecture and grain quality. Chin Sci Bull, 2018,63:1276-1289.
|
[30] |
Chen M H, Bergman C J, Pinsona S R M, Fjellstrom R G . Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection. J Cereal Sci, 2008,48:781-788.
|
[31] |
Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T . Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. Breed Sci, 2014, 64:142.
|
[32] |
Luo J X, Jobling S A, Millar A, Morell M K, Li Z Y . Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. Rice, 2015,8:15.
|
[33] |
Li Q F, Liu X Y, Zhang C Q, Jiang L, Jiang M Y, Zhong M, Fan X L, Gu M H, Liu Q Q . Rice soluble starch synthase: I. Allelic variation, expression, function, and interaction with Waxy. Front Plant Sci, 2018,9:1591.
|
[34] |
Wang K, Hasjim J, Wu A C, Li E P, Henry R J, Gilbert R G . Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohydr Polym, 2015,127:264-74.
|
[35] |
Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J A, Yu H, Smith S M, Wu D X, Li J Y . Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci USA, 2016,113:12844-12849.
|
[36] |
Fan M Y, Wang X J, Sun J, Zhang Q, Xu Z J, Xu Q . Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses. Breed Sci, 2017,67:450-458.
|
[37] |
Misra G, Badoni S, Domingo C J, Cuevas R P O, Llorente C, Mbanjo E G N, Sreenivasulu N . Deciphering the genetic architecture of cooked rice texture. Front Plant Sci, 2018,9:1405.
|
[38] |
Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q . Detection of allelic variation at the Wx locus with single-segment substitution lines in rice(Oryza sativa L.). Mol Breed, 2012,30:583-595.
|
[39] |
Teng B, Zhang Y, Du S Y, Wu J D, Li Z F, Luo Z H, Yang J B . Crystalline, thermal and swelling properties of starches from single-segment substitution lines with different Wx alleles in rice(Oryza sativa L.). J Sci Food Agric, 2017,97:108-114.
|
[40] |
Bao J S, Kong X G, Xie, J K, Xu L J Analysis of genotypic and environmental effects on rice starch: 1. Apparent amylose content, pasting viscosity, and gel texture. J Agric Food Chem, 2004,52:6010-6016.
|
[41] |
Xu Y J, Ying Y N, Ou-Yang S H, Duan X L, Sun H, Jiang S K, Sun S C, Bao J S . Factors affecting sensory quality of cooked japonica rice. Rice Sci, 2018,2:330-339.
|
[42] |
Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K I, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A, Ahmad R, Habibi F, Reinke R . Important sensory properties differentiating premium rice varieties. Rice, 2010,3:270-281.
|
[43] |
Inukai T, Hirayama Y . Comparison of starch levels reduced by high temperature during ripening in japonica rice lines near- isogenic for the Wx locus. J Agron Crop Sci, 2010,196:296-301.
|
[44] |
Wang K, Zhou Q F, Liu J Y, Qiu F L, Angelita dela Paz M, Larazo W, Yang Y Z, Xie F M . Genetic effects of Wx allele combinations on apparent amylose content in tropical hybrid rice. Cereal Chem, 2017,94:887-891.
|