Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 2053-2063.doi: 10.3724/SP.J.1006.2021.01073

• RESEARCH NOTES • Previous Articles    

Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones

ZHAO Xu-Yang1(), YAO Fang-Jie1, LONG Li1, WANG Yu-Qi1, KANG Hou-Yang1,2, JIANG Yun-Feng1,2, LI Wei3, DENG Mei1, LI Hao1, CHEN Guo-Yue1,2,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130, Sichuan, China
    3College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2020-09-07 Accepted:2021-03-20 Online:2021-10-12 Published:2021-04-16
  • Contact: CHEN Guo-Yue E-mail:zhaoxuyang1101@qq.com;gychen@sicau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0102000);Key Research and Development Program of Sichuan Province(2018NZDZX0002);International Science and Technology Cooperation and Exchanges Programs of Science and Technology Department of Sichuan Province(2019YFH0063)

Abstract:

Wheat stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most serious diseases in wheat. To address the threat of predominant Pst races to wheat production and screen resistance resources to breed new wheat cultivars in China, the resistance of 93 wheat landraces derived from Qinghai-Tibet spring and winter wheat zones to stripe rust were evaluated at seedling stage and adult plant stage, and the Yr genes that they might carry were detected. The resistance of 93 wheat landraces were evaluated at seedling stage in a greenhouse with two Pst races CYR32 and CYR34, and at adult plant stage under four field conditions with the mixture of Pst races (CYR32, CYR33, CYR34, Su11-4, Su11-5, and G22-14) in Chongzhou and Mianyang, Sichuan during 2015-2016, 2017-2018, and 2018-2019 cropping seasons, respectively. The panel of wheat landraces was detected with flanking markers closely linked to stripe rust resistance genes Yr5, Yr10, Yr18, Yr24 (=Yr26), Yr48, Yr65, and Yr67. Resistance evaluation indicated that four landraces (4.30%) were resistant to CYR32, three (3.26%) resistant to CYR34, and one was resistant to both CYR32 and CYR34 at seedling stage. Ten landraces displayed resistance to mixed races at adult plant stage under four field conditions. Molecular detection indicated that 11, 40, and 1 landrace might carry Yr18, Yr48, and Yr65, respectively. Seven landraces may carry both Yr18 and Yr48. In addition, no Yr genes were detected in the three resistant wheat landraces, indicating that these wheat landraces might carry other known or unknown stripe rust resistance genes. The wheat landraces derived from Qinghai-Tibet spring and winter wheat zones showed low levels of resistance to the current predominant Pst races in China, and they carried less resistance genes. These wheat landraces with good resistance and carrying known or unknown resistance genes should be valued to explore novel stripe rust resistance genes and accelerate their utilization in wheat breeding program.

Key words: wheat landraces, stripe rust, resistance evaluation, Yr genes

Table 1

Evaluation of stripe rust resistance and molecular detection of Yr genes of 93 wheat landraces from Qinghai-Tibet spring and winter wheat zones"

种质
Landrace
产地
Origin
成株期
Adult plant stage
苗期
Seedling stage
抗性类型
Resistance type
分子标记检测
Presence or absence of Yr gene based
on molecular marker detection
16CZ 16MY 18CZ 19CZ CYR32 CYR34
DS(%) IT DS(%) IT DS(%) IT IT IT IT Yr18 Yr48 Yr65 Yr67
长芒白粒麦Changmangbailimai 西藏察雅Chaya, Tibet 40 3 60 3 72 3 3 3 3 S + +
波密杂麦-5 Bomizamai-5 西藏波密Bomi, Tibet 20 2 40 3 100 4 3 3 3 S + +
林芝杂小麦Linzhizaxiaomai 西藏林芝Linzhi, Tibet 80 4 80 3 80 3 3 3 3 S + +
无芒小麦Wumangxiaomai 西藏昂仁Angren, Tibet * * 100 4 100 4 4 3 4 S + +
达孜杂小麦-3Dazizaxiaomai-3 西藏达孜Dazi, Tibet 40 3 40 3 60 3 3 4 4 S +
贡吉卓Gongjizhuo 西藏察隅Chayu, Tibet 100 4 100 4 100 4 4 3 4 S +
翻身卓Fanshenzhuo 西藏琼结Qiongjie, Tibet 100 4 100 4 84 3 3 3 4 S +
苏卓卓玛Suzhuozhuoma 西藏八宿Basu, Tibet 20 2 20 3 72 3 1 3 4 S +
加查扎仁卓玛Jiachazharenzhuoma 西藏加查Jiacha, Tibet 20 2 5 1 8 2 1 2 3 ASR + +
曲下小麦Quxiaxiaomai 西藏定日Dingri, Tibet 80 4 100 3 88 4 3 3 3 S + +
定日长芒Dingrichangmang 西藏定日Dingri, Tibet 80 4 80 4 26 3 3 3 3 S + +
波密短曲Bomiduanqu 西藏波密Bomi, Tibet 60 3 20 3 7 1 3 4 3 S + +
大红麦Dahongmai 青海平安Pingan, Qinghai 5 0; 0 0; 0 0; 1 3 3 APR + +
朗县贡卓Langxiangongzhuo 西藏朗县Langxian, Tibet 5 0; 5 1 10 2 3 3 3 S + +
丕卓Pizhuo 西藏加查Jiacha, Tibet * 4 60 3 8 1 3 4 3 S + +
广欠无芒Guangqianwumang 西藏林芝Linzhi, Tibet * 0 0 0 3 1 1 1 3 ASR + +
加查鼠麦Jiachashumai 西藏加查Jiacha, Tibet * 4 40 3 100 4 3 3 3 S + +
准唐玉卓Huaitangyuzhuo 西藏昂仁Angren, Tibet 100 4 100 4 100 4 4 3 4 S +
红芒麦子Hongmangmaizi 四川义敦Yidun, Sichuan 20 2 5 1 4 1 1 3 3 APR +
吉雄扎嘎Jixiongzhaga 西藏贡嘎Gongga, Tibet 5 1 80 4 52 3 3 3 3 S +
藏麦-169 Zangmai-169 西藏拉萨Lasa, Tibet 100 4 100 4 88 4 4 4 3 S +
加长麦Jiachangmai 西藏昌都Changdu, Tibet 100 4 100 4 92 4 4 3 3 S +
踏荣卓Tarongzhuo 西藏尼木Nimu, Tibet 100 4 100 4 15 3 4 3 4 S +
岗吉基卓Gangjijizhuo 西藏亚东Yadong, Tibet 80 3 60 3 35 3 3 3 3 S
小红麦(八宝)Xiaohongmai(Babao) 青海祁连Qilian, Qinghai 60 3 60 3 72 4 1 3 4 S +
吉林春麦Jilinchunmai 西藏扎囊Zhanang, Tibet 40 2 0 0; 6 1 3 4 4 S +
下康布Xiakangbu 西藏亚东Yadong, Tibet 20 2 5 1 60 4 2 4 3 S +
江当秃头Jiangdangtutou 西藏乃东Naidong, Tibet 60 3 40 3 60 4 3 4 4 S +
长芒毛颖麦Changmangmaoyingmai 西藏察雅Chaya, Tibet 60 3 40 3 80 4 3 2 4 S +
毛红麦Maohongmai 青海贵德Guide, Qinghai 100 4 100 4 100 4 3 3 3 S +
尕老汉Galaohan 青海乐都Ledu, Qinghai 5 1 5 1 48 2 1 4 4 APR +
兰麦Lanmai 青海都兰Dulan, Qinghai 100 4 100 4 100 4 4 4 3 S +
扎仁玛布Zharenmabu 西藏昌都Changdu, Tibet 80 3 80 3 88 4 4 3 4 S +
高山早熟小麦Gaoshanzaoshuxiaomai 四川新龙Xinlong, Sichuan 20 2 5 1 13 2 1 3 4 APR +
小红麦Xiaohongmai 青海都兰Dulan, Qinghai 60 3 10 3 40 3 3 3 4 S +
大六月黄Daliuyuehuang 青海贵德Guide, Qinghai 80 4 100 4 2 1 1 3 4 S +
白小麦Baixiaomai 西藏林芝Linzhi, Tibet 80 3 60 3 28 3 3 3 4 S +
团结基卓Tuanjiejizhuo 西藏察雅Chaya, Tibet 100 4 100 4 72 4 4 4 4 S +
年扎冬小麦Nianzhadongxiaomai 西藏错那Cuona, Tibet * 3 20 3 2 2 3 3 3 S
吉古丕卓Jigupizhuo 西藏墨竹Mozhu, Tibet * 3 0 3 * * 3 3 4 S
王卡麦Wangkamai 西藏察雅Chaya, Tibet * 4 60 3 60 4 3 4 3 S +
仁布春Renbuchun 西藏仁布Renbu, Tibet 100 4 40 3 28 3 3 3 3 S +
加查红颖Jiachahongying 西藏加查Jiacha, Tibet * 4 80 3 76 4 4 3 1 S +
宗沙麦Zongshamai 西藏察雅Chaya, Tibet * 4 80 3 88 4 4 4 4 S +
鲁朗白麦Lulangbaimai 西藏林芝Linzhi, Tibet 40 3 40 3 44 3 3 3 4 S +
红和尚头Hongheshangtou 西藏乃东Naidong, Tibet * 4 60 3 800 4 3 3 3 S +
扎国勾曲麦Zhaguogouqumai 西藏错那Cuona, Tibet * 4 20 3 60 4 3 3 3 S +
毛颖麦Maoyingmai 西藏错那Cuona, Tibet * 4 5 3 30 4 3 3 3 S +
羊日大穗Yangridasui 西藏拉萨Lasa, Tibet * 4 0 0; 56 4 3 3 3 S +
易贡卓Yigongzhuo 西藏波密Bomi, Tibet * 3 10 3 44 3 3 3 4 S +
桑久比卓Sangjiubizhuo 西藏察隅Chayu, Tibet * 3 40 3 60 3 3 4 3 S +
塔吉卓Tajizhuo 西藏达孜Dazi, Tibet * 4 100 4 100 4 3 3 4 S +
曲红麦Quhongmai 西藏拉萨Lasa, Tibet * 4 40 3 92 4 3 3 4 S +
错那白麦Cuonabaimai 西藏错那Cuona, Tibet * 4 10 3 80 4 3 4 4 S +
白玉小麦Baiyuxiaomai 四川白玉Baiyu, Sichuan 20 2 0 0; 0 0; 2 4 4 APR +
泽当毛颖Zedangmaoying 西藏乃东Naidong, Tibet 10 2 * * 37 4 3 3 4 S
扎西岗卓Zhaxigangzhuo 西藏定日Dingri, Tibet 100 4 100 4 100 4 4 4 4 S
兴荣春麦Xingrongchunmai 西藏隆子Longzi, Tibet 20 3 10 2 10 3 3 3 3 S
中芒卓玛Zhongmangzhuoma 西藏芒康Mangkang, Tibet * * 60 3 6 2 3 4 4 S
然日无芒麦Ranriwumangmai 四川石渠Shiqu, Sichuan 100 4 80 3 100 4 4 3 3 S
定结春Dingjiechun 西藏定结Dingjie, Tibet 5 1 5 1 0 0; 1 3 1 ASR
德阳杂麦Deyangzamai 西藏米林Milin, Tibet 60 3 60 3 68 4 3 4 4 S
白颖无芒小麦Baiyingwumangxiaomai 西藏江孜Jiangzi, Tibet 80 3 80 3 100 4 4 2 0 S
生格小麦Shenggexiaomai 西藏昌都Changdu, Tibet 100 4 100 4 * 4 4 4 3 S
大白麦Dabaimai 青海化隆Hualong, Qinghai 80 3 60 3 44 3 1 4 4 S
红小麦Hongxiaomai 西藏八宿Basu, Tibet 100 4 100 4 88 4 4 4 4 S
聂拉木无芒Nielamuwumang 西藏聂拉木Nielamu, Tibet 100 4 100 4 100 4 4 3 4 S
沙马比卓Shamabizhuo 西藏察隅Chayu, Tibet 40 3 40 3 48 3 3 3 4 S
丁青毛颖麦Dingqingmaoyingmai 西藏昌都Changdu, Tibet 100 4 100 4 76 4 4 3 4 S
无芒白麦Wumangbaimai 西藏墨竹Mozhu, Tibet 100 4 100 4 80 4 4 4 3 S
泽当杂小麦Zedangzaxiaomai 西藏乃东Naidong, Tibet * 4 80 4 26 4 3 4 4 S
扎仁卓玛Zharenzhuoma 西藏朗县Langxian, Tibet * 4 80 3 26 3 3 4 4 S
东门秃头麦Dongmentutoumai 西藏乃东Naidong, Tibet * 4 60 3 40 3 3 3 4 S
吉丁无芒春麦Jidingwumangchunmai 西藏谢通门Xietongmen, Tibet * 4 100 4 100 4 4 4 4 S
普芒红麦Pumanghongmai 西藏普芒Pumang, Tibet 60 2 5 1 8 1 0; 4 4 APR
曲下基卓Quxiajizhuo 西藏拉孜Lazi, Tibet * 4 80 4 88 4 3 4 4 S
沙岗春Shagangchun 西藏康马Kangma, Tibet 100 4 100 4 100 4 3 4 3 S
学隆卓Xuelongzhuo 西藏察雅Chaya, Tibet 100 4 5 0 61 3 3 4 3 S
白马店卓Baimadianzhuo 西藏林芝Linzhi, Tibet * 2 5 1 4 1 0; 3 3 APR
加查冬春麦Jiachadongchunmai 西藏加查Jiacha, Tibet 100 4 80 3 100 4 3 3 3 S
扎娜Zhana 西藏曲松Qusong, Tibet 100 4 20 3 100 4 3 3 3 S
杰果扎仁布素Jieguozharenbusu 西藏米林Milin, Tibet * 3 0 1 17 3 3 3 3 S
拉月大穗Layuedasui 西藏林芝Linzhi, Tibet * 4 40 3 48 3 3 4 3 S
长芒培卓Changmangpeizhuo 西藏堆龙Duilong, Tibet * 4 40 3 18 4 3 3 4 S
仁达长光麦Rendachangguangmai 西藏察雅Chaya, Tibet 100 4 100 4 96 4 3 3 3 S
东莱长红麦Donglaichanghongmai 西藏加查Jiacha, Tibet * 4 80 3 96 4 3 3 3 S
秃毛麦Tumaomai 西藏波密Bomi, Tibet * 3 10 3 60 4 3 3 3 S
吉日卓Jirizhuo 西藏林芝Linzhi, Tibet * 3 10 3 25 3 3 3 4 S
达当卓Dadangzhuo 西藏察雅Chaya, Tibet * 4 60 3 88 4 3 3 4 S
加查红麦Jiachahongmai 西藏加查Jiacha, Tibet * 4 100 4 72 4 3 3 4 S
无芒毛颖麦Wumangmaoyinmai 西藏加查Jiacha, Tibet * 4 60 3 76 4 3 4 4 S
东门红秃子Dongmenhongtuzi 西藏乃东Naidong, Tibet * * * * 9 2 3 4 4 S
陇南长芒Longnanchangmang 西藏加查Jiacha, Tibet * 4 100 4 100 4 4 4 4 S

Table 2

Names and sequences of flanking markers closely linked to Yr genes"

Yr 基因
Yr gene
标记类型
Marker type
标记名称
Marker name
引物序列
Primer sequence (5′-3′)
遗传距离
Genetic distance (cM)
参考文献
Reference
Yr5 KASP Yr5F GCGCCCCTTTTCGAAAAAATA Marchal et al. [29]
Yr5H CTAGCATCAAACAAGCTAAATA
Yr5R ATGTCGAAATATTGCATAACATGG
Yr10 Indel Xsdauw79-F TTGCTCTAAGCTGTGGCCT Yuan et al. [30]
Xsdauw79-R GAGTTCAACCCCGAACACT
Xsdauw79-NF AGAGCCTAAGCGCCTAAGG
Xsdauw79-NR TTAAAATCTCCCAAGTACGCA
Yr18 STS csLV34 GTTGGTTAAGACTGGTGATGG 0.4 Lagudah et al. [31]
TGCTTGCTATTGCTGAATAGT
Gene Marker Cssfr5 TTGATGAAACCAGTTTTTTTTCTA Lagudah et al. [31]
GGGAGCATTATTTTTTTCCATCATG
ACTTTCCTGAAAATAATACAAGCA
TATGCCATTTAACATAATCATGAA
Yr24 STS Xwe173 GGGACAAGGGGAGTTGAAGC 1.4 Wang et al. [32]
GAGAGTTCCAAGCAGAACAC
STS Xwe33 TAAACCAAGTCCCCCAAA Wang et al. [32]
GGAGTCCATCTTCACCGA
Yr48 SSR Xwmc727 CATAATCAGGACAGCCGCAC 4.4 Lowe et al. [33]
TAGTGGCCTGATGTATCTAGTTGG
Yr65 SSR Xgwm18 GGTTGCTGAAGAACCTTATTTAGG 1.2 Cheng et al. [34]
TGGCGCCATGATTGCATTATCTTC
Yr67 SSR Xbarc182 CCATGGCCAACAGCTCAAGGTCTC 0.4 Xu et al. [35]
CGCAAAACCGCATCAGGGAAGCACCAAT
SSR Xcfa2040 TCAAATGATTTCAGGTAACCACTA 2.8 Xu et al. [35]
TTCCTGATCCCACCAAACAT

Fig. 1

Molecular detection of Yr18 in part of wheat landraces collected from the Qinghai-Tibet spring and winter wheat zones in China M: molecular weight standard; Yr18: Yr18/6* Avocet S; AvS: Avocet Susceptible; 1: Jiachazharenzhuoma; 2: Dahongmai; 3: Guangqianwumang; 4: Galaohan; 5: Gaoshanzaoshuxiaomai; 6: Baiyuxiaomai; 7: Pumanghongmai; 8: Baimadianzhuo; 9: Changmangbailimai; 10: Bomizamai-5; 11: Linzhizaxiaomai; 12: Tarongzhuo."

[1] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版, 2002. pp 1-50.
Li Z Q, Zeng S M. Wheat Rusts in China. Beijing: China Agriculture Press, 2002. pp 1-50(in Chinese).
[2] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46:4254-4262.
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46:4254-4262 (in Chinese with English abstract).
[3] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27:314-337.
doi: 10.1080/07060660509507230
[4] Chen W Q, Wu L R, Liu T G, Xu S C, Jin S L, Peng Y L, Wang B T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis, 2009, 93:1093-1101.
doi: 10.1094/PDIS-93-11-1093 pmid: 30754577
[5] 徐琪. 中国小麦品种(系)抗条锈性评价及抗病基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Xu Q. Stripe Rust Resistance and Genes to in Current Breeding Lines of Wheat in China. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[6] Line R F, Chen X M. Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995, 79:1254-1255.
[7] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48:3439-3453.
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 48:3439-3453 (in Chinese with English abstract).
[8] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017, 47:681-687.
Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin, 2017, 47:681-687 (in Chinese with English abstract).
[9] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45(1):1-6.
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018, 45(1):1-6 (in Chinese with English abstract).
[10] 曹世勤, 贾秋珍, 宋建荣, 张耀辉, 王万军, 岳维云, 孙振宇, 黄瑾, 张勃, 王晓明. 甘肃省冬小麦抗条锈菌CYR34育种策略. 植物遗传资源学报, 2019, 20:1129-1133.
Cao S Q, Jia Q Z, Song J R, Zhang Y H, Wang W J, Yue W Y, Sun Z N, Huang J, Zhang B, Wang X M. Strategies on breeding for winter wheat resistance to Puccinia striiformis f. sp. tritici CYR34 in Gansu province. J Plant Genet Resour, 2019, 20:1129-1133 (in Chinese with English abstract).
[11] 王明玉, 冀凯燕, 冯晶, 蔺瑞明, 王凤涛, 徐世昌. 104个小麦品种抗条锈性及遗传多样性分析. 植物保护学报, 2018, 45(1):27-36.
Wang M Y, Ji K Y, Feng J, Lin R M, Wang F T, Xu S C. Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. J Plant Prot, 2018, 45(1):27-36 (in Chinese with English abstract).
[12] 黄瑾, 贾秋珍, 金社林, 曹世勤, 张勃, 孙振宇, 骆惠生, 王晓明. 2010-2012年甘肃省小麦条锈病菌生理小种变化动态监测. 植物保护, 2014, 40(3):101-116.
Huang J, Jia Q Z, Jin S L, Cao S Q, Zhang B, Sun Z Y, Luo H S, Wang X M. Population changes ofPuccinia striiformis f. sp. tritici in Gansu province during 2010-2012. Plant Prot, 2014, 40(3):101-116 (in Chinese with English abstract).
[13] 金善宝. 中国小麦品种及其系谱. 北京: 中国农业出版社, 1983. pp 75-88.
Jin S B. Chinese Wheat Varieties and Their Pedigrees. Beijing: China Agriculture Press, 1983. pp 75-88(in Chinese).
[14] 赵广才. 中国小麦种植区划研究(二). 麦类作物学报, 2010, 30:1140-1147.
Zhao G C. Study on Chinese wheat planting regionalization (II). J Triticeae Crops, 2010, 30:1140-1147 (in Chinese with English abstract).
[15] 杨敏娜, 彭岳林, 强小林, 卓嘎, 刘太国, 陈万权. 小麦品种在西藏的抗条锈性变异监测分析. 麦类作物学报, 2012, 32:557-562.
Yang M N, Peng Y L, Qiang X L, Zhuo G, Liu T G, Chen W Q. Monitoring of variation in resistance to stripe rust of wheat cultivars in Tibet. J Triticeae Crops, 2012, 32:557-562 (in Chinese with English abstract).
[16] 袁飞敏, 权有娟, 刘德梅, 陈志国. 青海高原197份小麦品种(系)及种质资源抗条锈分子鉴定. 西南农业学报, 2019, 32(1):1-13.
Yuan F M, Quan Y J, Liu D M, Chen Z G. Molecular identification of resistance to strip rust in 197 wheat cultivars (lines) and germplasm resources from Qinghai plateau. Southwest China J Agric Sci, 2019, 32(1):1-13 (in Chinese with English abstract).
[17] 董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000. p 17.
Dong Y C, Zheng D S. Wheat Genetic Resources of China. Beijing: China Agriculture Press, 2000. p 17 (in Chinese).
[18] 韩德俊, 张培禹, 王琪琳, 曾庆东, 吴建辉, 周新力, 王晓杰, 黄丽丽, 康振生. 1980份小麦地方品种和国外种质抗条锈性鉴定与评价. 中国农业科学, 2012, 45:5013-5023.
Han D J, Zhang P Y, Wang Q L, Zeng Q D, Wu J H, Zhou X L, Wang X J, Huang L L, Kang Z S. Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Sci Agric Sin, 2012, 45:5013-5023 (in Chinese with English abstract).
[19] 黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权. 我国197份小麦核心种质资源对小麦条锈菌新小种CYR34的抗性评价. 植物保护, 2019, 45(1):148-154.
Huang L, Liu T G, Liu B, Gao L, Luo P G, Chen W Q. Resistance evaluation of 197 Chinese wheat core germplasms to a new stripe rust race, CYR34. Plant Prot, 2019, 45(1):148-154 (in Chinese with English abstract).
[20] 黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 陈万权. 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测. 植物保护学报, 2018, 45(1):90-100.
Huang M M, Sun Z Y, Chao S Q, Jia Q Z, Liu T G, Chen W Q. Evaluation of the resistance of 223 wheat landraces in Gansu province to stripe rust and molecular detection. J Plant Prot, 2018, 45(1):90-100 (in Chinese with English abstract).
[21] 路端谊, 于孝如, 袁文焕, 李高保. 黄河中、下游农家小麦品种资源抗条锈病的研究. 中国农业科学, 1986, 19(5):26-31.
Lu D Y, Yu X R, Yuan W H, Li G B. Studies on stripe rust resistance of the rural wheat varieties from the lower and middle reaches of the Yellow River Valley. Sci Agric Sin, 1986, 19(5):26-31 (in Chinese with English abstract).
[22] 孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌. 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测. 植物保护, 2017, 43(2):64-72.
Sun J L, Wang T H, Feng J, Lin R M, Wang F T, Yao Q, Guo Q Y, Xu S C. Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers. Plant Prot, 2017, 43(2):64-72 (in Chinese with English abstract).
[23] 王吐虹, 郭青云, 蔺瑞明, 姚强, 冯晶, 王凤涛, 陈万权, 徐世昌. 中国40个小麦农家品种和甘肃南部40个生产品种抗条锈病基因推导. 中国农业科学, 2015, 48:3834-3847.
Wang T H, Guo Q Y, Lin R M, Yao Q, Feng J, Wang F T, Chen W Q, Xu S C. Postulation of stripe rust resistance genes in Chinese 40 wheat landraces and 40 commercial cultivars in the southern region of Gansu province. Sci Agric Sin, 2015, 48:3834-3847 (in Chinese with English abstract).
[24] 杨文雄, 杨芳萍, 梁丹, 何中虎, 尚勋武, 夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测. 作物学报, 2008, 34:1109-1113.
Yang W X, Yang F P, Liang D, He Z H, Shang X W, Xia X C. Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin, 2008, 34:1109-1113 (in Chinese with English abstract).
[25] Carter A H, Chen X M, Garland-Campbell K, Kidwell K K. Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat(Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet, 2009, 119:1119-1128.
doi: 10.1007/s00122-009-1114-2 pmid: 19644666
[26] Hungerford C W, Owens C E. Specialized varieties of Puccinia glumarum, and hosts for variety tritici. J Agric Res, 1923, 25:363-402.
doi: 10.1071/AR9740363
[27] 陈万权, 刘太国, 陈巨莲, 徐世昌. 小麦抗病虫性评价技术规范. 第1部分: 小麦抗条锈病评价技术规范: NT/T1443.1-2007. 2007-09-14 [2017-03-03].
Chen W Q, Liu T G, Chen J L, Xu S C. Rules for resistance evaluation of wheat to diseases and insect pests. Part 1: Rule for resistance evaluation of wheat to yellow rust (Puccinia striiformis West. f. sp. tritici Eriks.): NT/T1443.1-2007[S]. 2007-09-14 [2017-03-03] (in Chinese).
[28] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42:2088-2091.
doi: 10.2135/cropsci2002.2088
[29] Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N M, Boyd L, McIntosh R, Wulff B B H, Berry Simon, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018, 4:662-668.
doi: 10.1038/s41477-018-0236-4
[30] Yuan C L, Wu J Z, Yan B Q, Hao Q Q, Zhang C Z, Lyu B, Ni F, Caplan A, Wu J J, Fu D L. Remapping of the stripe rust resistance gene Yr10 in common wheat. Theor Appl Genet, 2018, 131:1253-1262.
doi: 10.1007/s00122-018-3075-9
[31] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119:889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[32] Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008, 159:359-366.
doi: 10.1007/s10681-007-9524-1
[33] Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123:143-157.
doi: 10.1007/s00122-011-1573-0
[34] Cheng P, Xu L S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet, 2014, 127:2267-2277.
doi: 10.1007/s00122-014-2378-8 pmid: 25142874
[35] Xu H X, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica, 2014, 198:317-323.
doi: 10.1007/s10681-014-1108-2
[36] 蔺瑞明, 郄彦敏, 冯晶, 徐世昌. 中国小麦农家品种抗条锈病的鉴定与评价. 沈阳农业大学学报, 2010, 41:535-539.
Lin R M, Qie Y M, Feng J, Xu S C. Identification of the yellow rust resistance gene-carrying wheat landraces in China. J Shenyang Agric Univ, 2010, 41:535-539 (in Chinese with English abstract).
[37] 李菁, 姚方杰, 龙黎, 王昱琦, 叶雪玲, 邓梅, 蒋云峰, 李伟, 江千涛, 康厚扬, 陈国跃. 中国特有的3个普通小麦亚种抗条锈病评价及其抗性基因分子检测. 植物病理学报, 2020, 50:426-441.
Li J, Yao F J, Long L, Wang Y Q, Ye X L, Deng M, Jiang Y F, Li W, Jiang Q T, Kang H Y, Chen G Y. Evaluation and molecular detection of stripe rust resistance in three subspecies of Chinese endemic wheat. Acta Phytopathol Sin, 2020, 426-441 (in Chinese with English abstract).
[38] 彭岳林, 杨敏娜, 旦巴, 大次卓嘎. 西藏小麦品种(系)的抗条锈性鉴定与评价. 贵州农业科学, 2015, 43(6):11-14.
Peng Y L, Yang M N, Dan B, Daci Z G. Identification and evaluation of stripe rust resistance of wheat varieties (lines) in Tibet. Guizhou Agric Sci, 2015, 43(6):11-14 (in Chinese with English abstract).
[39] Macer R C F. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Hereditas, 1966, 2:127-142.
[40] Law C N. The genetic control of daylength response in T. spelta album. Plant Breeding Institute, Cambridge Annual Report, 1976. pp 108-109.
[41] Zhang G S, Zhao Y Y, Kang Z S, Zhao J. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Dis, 2020, 104:284.
[42] Zhang P, McIntosh R A, Hoxha S, Dong C M. Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor Appl Genet, 2009, 120:25-29.
doi: 10.1007/s00122-009-1156-5 pmid: 19763533
[43] Metzger R J, Silbaugh B A. Inheritance of resistance to stripe rust and its association with brown glume color in Triticum aestivum L., ‘P.I.178383’. Crop Sci, 1970, 10:567.
doi: 10.2135/cropsci1970.0011183X001000050035x
[44] 李峰奇, 韩德俊, 魏国荣, 曾庆东, 黄丽丽, 康振生. 黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测. 中国农业科学, 2008, 41:3060-3069.
Li Q F, Han D J, Wei G R, Zeng Q D, Huang L L, Kang Z S. Molecular detection of stripe rust resistant genes in 126 winter wheat varieties from the Huanghuai wheat region. Sci Agric Sin, 2008, 41:3060-3069 (in Chinese with English abstract).
[45] 伍玲, 谭君, 朱华忠, 王中烈, 蒲晓蓉. 四川近年小麦区试品系中Yr5Yr10Yr15的分子标记检测. 西南农业学报, 2007, 2:316-320.
Wu L, Tan J, Zhu H Z, Wang Z L, Pu X R. Detection of stripe rust resistant genes of Yr5, Yr10 and Yr15 in some Sichuan wheat lines by molecular markers. Southwest China J Agric Sci, 2007, 2:316-320 (in Chinese with English abstract).
[46] 曾庆东, 沈川, 袁凤平, 王琪琳, 吴建辉, 薛文波, 詹刚明, 姚石, 陈伟, 黄丽丽, 韩德俊, 康振生. 小麦抗条锈病已知基因对中国当前流行小种的有效性分析. 植物病理学报, 2015, 45:641-650.
Zeng Q D, Shen C, Yuan F P, Wang Q L, Wu J H, Xue W B, Zhan G M, Yao S, Chen W, Huang L L, Han D J, Kang Z S. The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin, 2015, 45:641-650 (in Chinese with English abstract).
[47] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112:1434-1440.
pmid: 16525837
[48] 韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种(系)抗条锈病性评价. 中国农业科学, 2010, 43:2889-2896.
Han D J, Wang Q L, Zhang L, Wei G R, Zeng Q D, Zhao J, Wang X J, Huang L L, Kang Z S. Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China and the middle and lower reaches of Changjiang river epidemic area. Sci Agric Sin, 2010, 43:2889-2896 (in Chinese with English abstract).
[49] 张培禹, 曾庆东, 王琪琳, 康振生, 韩德俊. 四川盆地小麦品种(系)抗条锈性鉴定与评价. 麦类作物学报, 2012, 32:779-783.
Zhang P Y, Zeng Q D, Wang Q L, Kang Z S, Han D J. Identification and evaluation of resistance to stripe rust in current wheat cultivars (lines) from Sichuan Basin. J Triticeae Crops, 2012, 32:779-783 (in Chinese with English abstract).
[50] 李北, 徐琪, 杨宇衡, 王琪琳, 曾庆东, 吴建辉, 穆京妹, 黄丽丽, 康振生, 韩德俊. 重庆麦区小麦品种(系)抗条锈性评价与基因分析. 中国农业科学, 2017, 50:413-425.
Li B, Xu Q, Yang Y H, Wang Q L, Zeng Q D, Wu J H, Mu J M, Huang L L, Kang Z S, Han D J. Stripe rust resistance and genes in Chongqing wheat cultivars and lines. Sci Agric Sin, 2017, 50:413-425 (in Chinese with English abstract).
[51] Zheng S G, Li Y F, Lu L, Liu Z H, Zhang C H, Ao D H, Ling L R, Zhang C Y, Liu R, Luo C P, Wu Y, Zhang L. Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica, 2017, 213:50.
doi: 10.1007/s10681-016-1828-6
[52] Li Y, Niu Y C, Chen X M. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theor Appl Genet, 2009, 118:339-346.
doi: 10.1007/s00122-008-0903-3 pmid: 18946654
[53] Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 1992, 82:835-838.
doi: 10.1094/Phyto-82-835
[54] 伍玲. 小麦条锈病成株抗性QTL定位和分子标记检测. 四川农业大学博士学位论文, 四川成都, 2011.
Wu L. QTL Mapping and Molecular Characterization of Adult-plant Resistance to Stripe Rust in Common Wheat. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2011 (in Chinese with English abstract).
[55] Singh R P, Rajaram S. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica, 1993, 72:1-7.
doi: 10.1007/BF00023766
[56] 伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010, 43:4553-4561.
Wu L, Xia X C, Zhu H Z, Li S Z, Zheng Y L, He Z H. Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin, 2010, 43:4553-4561 (in Chinese with English abstract).
[1] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[2] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[3] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[4] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[5] BAI Zong-Fan,JING Xia,ZHANG Teng,DONG Ying-Ying. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust [J]. Acta Agronomica Sinica, 2020, 46(8): 1248-1257.
[6] ZHENG Yan-Yan, HUANG De-Hua, LI Ji-Long, ZHANG Hui-Fei, BAO Yin-Guang, NI Fei, WU Jia-Jie. Analysis of the stripe rust resistance in a wheat line CB037 with high regeneration and transformation efficiency [J]. Acta Agronomica Sinica, 2020, 46(11): 1743-1749.
[7] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[8] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[9] Ming-Gang XIAO, Feng-Jing SONG, Bing SUN, Xin ZUO, Guang-Shan ZHAO, Ai-Hua XIN, Zhu-Gang LI. Exploration of Foreign Maize Inbred Lines with Broad Spectrum Resistance to Northern Corn Leaf Blight and Preliminary Identification of Resistance Genes [J]. Acta Agronomica Sinica, 2018, 44(04): 614-619.
[10] MAO Yan-Zhi,LI Chun-Jie,HU Yan-Feng,HUA Cui,YOU Jia,WANG Xin-Peng,LIU Xi-Cai,YANG Geng-Bin,WANG Cong-Li. Resistance Evaluation of Potato Cultivars and Germplasms to Meloidogyne hapla in Heilongjiang Province [J]. Acta Agron Sin, 2017, 43(12): 1864-1869.
[11] ZHANG Huai-Zhi,XIE Jing-Zhong,CHEN Yong-Xing,LIU Xu,WANG Yong,WU Qiu-Hong,Lu Ping,ZHANG De-Yun,LI Miao-Miao,GUO Guang-Hao,YAN Su-Hong,YANG Zhao-Sheng,ZHAO Hong,WANG Xi-Cheng,JIA Lianhe. Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq [J]. Acta Agron Sin, 2017, 43(11): 1643-1649.
[12] LIU Jin-Dong,YANG En-Nian,XIAO Yong-Gui,CHEN Xin-Min,WU Ling,BAI Bin,LI Zai-Feng,Garry M. ROSEWARNE,XIA Xian-Chun,HE Zhong-Hu. Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat [J]. Acta Agron Sin, 2015, 41(10): 1472-1480.
[13] XING Xiao-Ping,YUAN Hong-Xia,SUN Jun-Wei,ZHANG Jie,SUN Bing-Jian,LI Hong-Lian. Resistance to Two Species of Cereal Cyst Nematode and Its Evaluation Methods in 47 Major Wheat Cultivars in Henan Province, China [J]. Acta Agron Sin, 2014, 40(05): 805-815.
[14] CHEN Guo-Yue, LIU Wei, HE Yuan-Jiang, GOU Lu-Lu, YU Ma, CHEN Shi-Sheng, WEI Yu-Ming, ZHENG You-Liang. Specific Loci for Adult-Plant Resistance to Stripe Rust in Wheat Founder Parent Fan 6 and Their Genetic Dissection in Its Derivatives [J]. Acta Agronomica Sinica, 2013, 39(05): 827-836.
[15] LI Ai-Hong,PAN Cun-Hong,DAI Zheng-Yuan,XIAO Ning,YU Ling,LI Yu-Hong,ZHANG Xiao-Xiang,ZHANG Hong-Xi,PAN Xue-Biao. Using Marker-Assisted Selection to Improve the Resistance to Rice Black-Streaked Dwarf Viral Disease of Huaidao 5, an Elite Japonica Rice Cultivar in Jiangsu [J]. Acta Agron Sin, 2012, 38(10): 1775-1781.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!