Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1472-1480.doi: 10.3724/SP.J.1006.2015.01472

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat

LIU Jin-Dong1,YANG En-Nian2,XIAO Yong-Gui1,CHEN Xin-Min1,WU Ling2,BAI Bin3,LI Zai-Feng4,Garry M. ROSEWARNE2,5,XIA Xian-Chun1,*,HE Zhong-Hu1,5,*   

  1. 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 3 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 4 College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China; 5CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2015-03-21 Revised:2015-05-04 Online:2015-10-12 Published:2015-05-25

Abstract:

Stripe rust, leaf rust, and powdery mildew are devastative fungal diseases of common wheat (Triticum aestivum L.) in China, and breeding cultivars with pleiotropic adult-plant resistance is believed to be the most important solution to control these diseases effectively and environmental friendly. A total of 21 winter wheat advanced lines and 96 spring wheat advanced lines collected from adult-plant resistance breeding programs were used to estimate the level of resistance against the stripe rust, leaf rust and powdery mildew across several environments. Simultaneously, the distribution of pleiotropic resistance genes Lr34/Yr18/Pm38, Lr46/Yr29/Pm39, and Sr2/Yr30 were also detected using molecular marker closely linked to the target genes. The field test showed that 17 winter wheat lines (80.9%) and 85 spring wheat lines (88.5%) performed acceptable resistance against the three diseases. All the 21 winter wheat lines tested contain QPm.caas-4DL, of which seven contain QPm.caas-2BS and nine contain QPm.caas-2BL. Among the 96 spring wheat lines, 18 carry Lr34/Yr18/Pm38, 37 carry Lr46/Yr29/Pm39, and 29 lines possess Sr2/Yr30. These results indicate that molecular-marker-assistant selection in combination with conventional breeding is effective and applicable in developing pleiotropic adult-plant resistance cultivars, which provides a new thought for wheat resistance breeding.

Key words: Triticum aestivum L., Pleiotropic resistance, Adult-plant resistance, Stripe rust, Leaf rust, Powdery mildew

[1]Wellings C R, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). Plant Breed, 1988, 100: 288–296



[2]Conner R L, Kuzyk A D, Su H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725–728



[3]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011, 44: 2193–2215



He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44: 2193–2215 (in Chinese with English abstract)



[4]Zhao X L, Zheng T C, Xia X C, He Z H, Liu D Q, Yang W X, Yin G H, Li Z F. Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2008, 117: 1069–1075



[5]Gustafson G D, Shaner G. Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982, 72: 746–749



[6]Singh R P, Huerta-Espino J, Bhavani S, Herrera-Foessel S A, Singh D, Singh P K, Velu G, Mason R E, Jin Y, Njau P, Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179: 175–186



[7]Rosewarne G M, Herrera-Foessel S A, Singh R P, Huerta-Espino J, Lan C X, He Z H. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet, 2013, 126: 2427–2449



[8]McIntosh R A, Dubcovsky J, Rogers W J, Morris C F, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013-2014 supplement. 2014. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013-2014.pdf



[9]Li Z F, Lan C X, He Z H, Singh R P, Rosewarne G M, Chen X M, Xia X C. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014, 54: 1907–1925



[10]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155–1166



[11]Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21–30



[12]梁丹, 杨芳萍, 何中虎, 姚大年, 夏先春. 利用 STS 标记检测CIMMYT小麦品种(系)中Lr34/Yr18, Rht-B1b和Rht-D1b基因的分布. 中国农业科学, 2009, 42: 17–27



Liang D, Yang F P, He Z H, Yao D N, Xia X C. Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin, 2009, 42: 17–27 (in Chinese with English abstract)



[13]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363



[14]Rosowarne G M, Singh R P, Huerta-Espino J, William H M, Bouchet S, Cloutier S, McFadden H, Lagudah E S. Leaf tip necrosis, molecular markers and β-proteasome subunits associated with the slow rusting resistance gene Lr46/Yr29. Theor Appl Genet, 2006, 112: 500–508.



[15]Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat. Phytopathology, 1992, 82: 835–838



[16]Lillemo M, Joshi A K, Prasad R, Chand R, Singh R P. QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet, 2013,126: 711–719



[17]Skovmand B, Wilcoxson R D, Shearer B L, Stucker R E. Inheritance of slow rusting to stem rust in wheat. Euphytica, 1978, 27: 95–107



[18]Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah E S, Ellis J, Spielmeyer W. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet, 2011, 122: 735–744



[19]Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh R P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011, 122: 239–249



[20]McIntosh R A, Dubcovsky J, Rogers W J, Morris C F, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2012 supplement. 2012. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2012.pdf



[21]Forrest K, Pujol V, Bulli P, Pumphrey M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Lagudah E, Hayden M, Spielmeyer W. Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Mol Breed, 2014, 34: 2109–2118



[22]Singh R P, William H M, Huerta-Espino J, Rosewarne G. Wheat rust in Asia: Meeting the challenges with old and new technologies. In: New Directions for a Diverse Planet. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. 2004, 26



[23]Lan C X, Liang S S, Wang Z L, Yan J, Zhang Y, Xia X C, He Z H. Quantitative trait loci mapping for adult-plant resistance against powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99: 1121–1126



[24]Lan C X, Ni X W, Yan J, Zhang Y, Xia C X, Chen X M, He Z H. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed, 2010, 25: 615–622



[25]Bai B, He Z H, Asad M A, Lan C X, Zhang Y, Xia X C, Yan J, Chen X M, Wang C S. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop Pasture Sci, 2011, 63: 606–611



[26]伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010, 43: 4553–4561



Wu L, Xia X C, Zhu H Z, Li S Z, Zheng Y L, He Z H. Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin, 2010, 43: 4553–4561 (in Chinese with English abstract)



[27]Li Z F, Xia X C, He Z H, Li X, Zhang L J, Wang H Y, Meng Q F, Yang W X, Li G Q, Liu D Q. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis, 2010, 94: 45–53



[28]Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can J Res, 1948, 26: 496–500



[29]Ren Y, Li Z F, He Z H, Wu L, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012, 125: 1253–1262



[30]Lan C X, Liang S S, Zhou X C, Zhou G, Lu Q L, Xia X C, He Z H. Identification of genomic regions controlling adult plant stripe rust resistance to in Chinese wheat landrace Pingyuan 50 through bulked segregant analysis. Phytopathology, 2010, 100: 313–318



[31]Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu L Q, Jing J X, Wang M N, Xia X C, He Z H. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349–1359



[32]Kaur J, Bariana H S. Inheritance of adult plant stripe rust resistance in wheat cultivars Kukri and Sunco. J Plant Pathol, 2010, 92: 391–394



[33]Rosewarne G M, Singh R P, Huerta-Espino J, Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet, 2012, 124: 1283–1294



[34]Lan C X, Rosewarne G M, Singh R P, Herrera-Foessel S A, Huerta-Espino J, Basnet B R, Yang E N. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin# 1. Mol Breed, 2014, 34: 789–803



[35]刘金栋, 陈新民, 何中虎, 伍玲, 白斌, 李在峰, 夏先春. 小麦慢白粉病QTL对条锈病和叶锈病的兼抗性. 作物学报, 2014, 40: 1557–1564



Liu J D, Chen X M, He Z H, Wu L, Bai B, Li Z F, Xia X C. Resistance of slow mildewing genes to stripe rust and leaf rust in common wheat. Acta Agron Sin, 2014, 40: 1557–1564 (in Chinese with English abstract)



[36]张勇, 申小勇, 张文祥, 陈新民, 阎俊, 张艳, 王德森, 王忠伟, 刘悦芳, 田宇兵, 夏先春, 何中虎. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012, 38: 1743–1751



Zhang Y, Shen X Y, Zhang W X, Chen X M, Yan J, Zhang Y, Wang D S, Wang Z W, Liu Y F, Tian Y B, Xia X C, He Z H. Marker-Assisted Selection of HMW-Glutenin 1Dx5+1Dy10 Gene and 1B/1R Translocation for Improving Industry Quality in Common Wheat. Acta Agron Sin, 2012, 38: 1743–1751 (in Chinese with English abstract)

[1] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[2] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[3] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[4] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[5] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[6] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[7] BAI Zong-Fan,JING Xia,ZHANG Teng,DONG Ying-Ying. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust [J]. Acta Agronomica Sinica, 2020, 46(8): 1248-1257.
[8] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[9] ZHENG Yan-Yan, HUANG De-Hua, LI Ji-Long, ZHANG Hui-Fei, BAO Yin-Guang, NI Fei, WU Jia-Jie. Analysis of the stripe rust resistance in a wheat line CB037 with high regeneration and transformation efficiency [J]. Acta Agronomica Sinica, 2020, 46(11): 1743-1749.
[10] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[11] ZHENG Hui-Min,WEN Xiao-Lei,HAO Chen-Yang,ZHANG Pei-Pei,GEBREWAHID Takele Weldu,YAN Xiao-Cui,LIU Da-Qun,ZHANG Xue-Yong,LI Zai-Feng. Seedling and slow rusting resistance to leaf rust in 70 introduced wheat lines [J]. Acta Agronomica Sinica, 2019, 45(10): 1455-1467.
[12] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[13] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[14] WU Qiu-Hong,CHEN Yong-Xing,LI Dan,WANG Zhen-Zhong,ZHANG Yan,YUAN Cheng-Guo,WANG Xi-Cheng,ZHAO Hong,CAO Ting-Jie,LIU Zhi-Yong. Large Scale Detection of Powdery Mildew Resistance Genes in Wheat via SNP and Bulked Segregate Analysis [J]. Acta Agron Sin, 2018, 44(01): 1-14.
[15] ZHANG Huai-Zhi,XIE Jing-Zhong,CHEN Yong-Xing,LIU Xu,WANG Yong,WU Qiu-Hong,Lu Ping,ZHANG De-Yun,LI Miao-Miao,GUO Guang-Hao,YAN Su-Hong,YANG Zhao-Sheng,ZHAO Hong,WANG Xi-Cheng,JIA Lianhe. Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq [J]. Acta Agron Sin, 2017, 43(11): 1643-1649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!