Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 1-14.doi: 10.3724/SP.J.1006.2018.00001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Large Scale Detection of Powdery Mildew Resistance Genes in Wheat via SNP and Bulked Segregate Analysis

WU Qiu-Hong1,CHEN Yong-Xing1,LI Dan2,WANG Zhen-Zhong3,ZHANG Yan2,YUAN Cheng-Guo4,WANG Xi-Cheng5,ZHAO Hong5,CAO Ting-Jie5,*,LIU Zhi-Yong1,*   

  1. 1 Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China; 2 China Agricultural University, Beijing 100193, China; 3 China’s Rural Technology Development Center, Beijing 100045, China; 4 Gaoyi Seeds Farm, Gaoyi 051330, Hebei, China; 5 Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2017-01-14 Revised:2017-09-10 Online:2018-01-12 Published:2017-10-27
  • Supported by:

    This study was supported by the National Key Research and Development Program of China (2017YFD0101000)

Abstract:

Large-scale detection of powdery mildew resistance genes is necessary for wheat germplasm innovation and breeding, especially via marker assisted selection. Illumina 90k iSelect SNP chip and Bulked Segregate Analysis (BSA) were applied to identify powdery mildew resistance gene in 36 wheat varieties (lines) from Henan province. SNP genotyping between 36 resistant bulks and 36 susceptible bulks revealed that single polymorphic SNP peaks were identified between 24 of the 36 bulk pairs, indicating single powdery mildew resistance gene may present in the 24 varieties (lines). Multiple polymorphic SNP peaks were found between other 12 resistant and susceptible bulks, indicating more than one powdery mildew resistance gene might be in these varieties (lines). Among the 36 bulk pairs, 26 showed the largest number of SNP enriched on chromosome 2AL, indicating the powdery mildew resistance genes, most likely on Pm4 locus, were in these 26 varieties (lines). A new marker Xwggc116 was developed and proved to be effective for detecting the powdery mildew resistance gene on 2AL. Overall, the combination of BSA and high-throughput SNP genotyping platform is highly effective for large scale powdery mildew resistance gene detection in wheat germplasm. There are a limited number of powdery mildew resistance genes (Pm2, Pm4, Pm21, and new 1BL/1RS translocation) in wheat varieties (lines) of Henan province, indicating very narrow genetic diversity of the powdery mildew resistance genes in wheat breeding program. Exploring and utilization of new diversified disease resistance genes are urgent for breeding new varieties with disease resistance.

Key words: wheat varieties, powdery mildew resistance gene, BSA, SNP

[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 469–487 Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: China Agriculture Press, 2003. pp 469-487 (in Chinese) [2] 杨作民, 唐伯让, 沈克全, 夏先春. 小麦抗病育种的战略问题——小麦对锈病, 白粉病第二线抗源的建立和应用. 作物学报, 1994, 20: 385–394 Yang Z M, Tang B R. Shen K Q. Xia X C. A strategic problem in wheat resistance breeding: building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin, 1994, 20: 385–394 (in Chinese with English abstract) [3] McIntosh R A, Dubcovsky J, Rogers W J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: supplement. 2017, Komugi—wheat genetic resources database, https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClass List.jsp [4] Lander E S. The new genomics: global views of biology. Science, 1996, 274: 536–539 [5] Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062 [6] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796 [7] 曹廷杰, 陈永兴, 李丹, 张艳, 王西成, 赵虹, 刘志勇. 河南小麦新育成品系白粉病抗性鉴定与分子标记检测. 作物学报, 2015, 41: 1172–1182 Cao T J, Chen Y X, Li D, Zhang Y, Wang X C, Zhao H, Liu Z Y. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan province, China. Acta Agron Sin, 2015, 41: 1172–1182 (in Chinese with English abstract) [8] 吴全安. 粮食作物种质资源抗病虫鉴定方法. 北京: 中国农业出版社, 1991 Wu Q A. Methods Used in the Evaluation of Pest Resistant Potentialities in Food Crop Germplasm Resources. Beijing: China Agriculture Press, 1991 (in Chinese) [9] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018 [10] Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet, 2004, 109: 140–145 [11] 刘金元, 刘大钧, 陶文静, 李万隆, 陈佩度. 小麦白粉病抗性基因Pm4a的RFLP标记转化为STS标记的研究. 农业生物技术学报, 1999, 7: 113–116 Liu J Y, Liu D J, Tao W J, Li W L, Chen P D. Study on the conversion of RFLP markers co-segregated with Pm4a to sequenced-tagged-site markers. J Agric Biotech, 1999, 7(2): 113–116 (in Chinese with English abstract) [12] Francis H A, Leitch A R, and Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat, Theor Appl Genet, 1995, 90: 636–642 [13] Song W, Xie C J, Du J K, Xie H, Liu Q, Ni Z F, Tsomin Y, Sun Q X, Liu Z Y. A “one-marker-for-two-genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed, 2009, 23: 357–363 [14] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832 [15] 邹喻苹, 葛颂. 新一代分子标记——SNPs及其应用. 生物多样性, 2003, 11: 370–382 Zou Y P, Ge S. A novel molecular marker: SNPs and its application. Chin Biodiv, 2003, 11: 370–382 (in Chinese with English abstract) [16] Sears E R, Briggle L W. Mapping gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci, 1969, 9: 96–97 [17] 金善宝. 中国小麦品种及其系谱. 北京: 中国农业科学出版社, 1983 Jin S B. Chinese Wheat Varieties and Their Pedigree. Beijing: China Agricultural Science and Technology Press, 1983 (in Chinese) [18] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535 Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract) [19] 袁文焕, 宋位中, 杨家秀, 李艳芳, 杨世成. 洛10、洛13致病类群的发现与研究. 中国农业科学, 1988, 21(5): 53–58 Yuan W H, Song W Z, Yang J X, Li Y F, Yang S H. The discovery and studies on physiological races of wheat stripe rust virulent to Lovrin 10 and Lovrin 13. Sci Agric Sin, 1988, 21(5): 53–58 (in Chinese with English abstract) [20] McIntosh R A, Bennett F G A. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biolo Sci, 1979, 32: 115–126 [21] Hao YF, Liu AF, Wang YH, Feng D S, Gao J R, Li X F, Liu S B, Wang H G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205–1212 [22] Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed, 2012, 29: 449–456 [23] Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585–590 [24] Fu B S, Chen Y, Li N, Ma H Q, Kong Z X, Zhang L X, Jia H Y, Ma Z Q. PmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet, 2013, 126: 913–921 [25] Niu J S, Wang B Q, Wang Y H, Cao A Z, Qi Z J, Shen T M. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90 (6)’. Plant Breed, 2008, 127: 346–349 [26] Xu W G, Li X C, Hu L, Zhang L, Zhang Z J, Dong B H, Wang S G. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed, 2010, 26: 31–38 [27] 高安礼, 何华纲, 陈全战, 张守忠, 陈佩度. 分子标记辅助选择小麦抗白粉病基因 Pm2、Pm4a和Pm21的聚合体. 作物学报, 2005, 31: 1400–1405 Gao A L, He H G, Chen Q Z, Zhang S Z, Chen P D. Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection. Acta Agron Sin, 2005, 31: 1400–1405 (in Chinese with English abstract) [28] 王俊美, 王飞, 宋玉立, 康振生, 刘红彦. 小麦已知抗白粉病基因在河南的抗性评价及Pm2基因的标记追踪. 麦类作物学报, 2009, 29: 535–539 Wang J M, Wang F, Song Y L, Kang Z S, Liu H Y. Evaluation of the known wheat powdery mildew resistance genes in Henan province and marker tracing of Pm2 gene. J Triticeae Crops, 2009, 29: 535–539 (in Chinese with English abstract) [29] 王竹林, 王艺桦, 刘联正, 奚亚军, 刘曙东. 小麦抗白粉病基因Pm4的分子标记辅助育种研究. 麦类作物学报, 2011, 31: 819–823 Wang Z L, Wang Y H, Liu L Z, Xi Y J, Liu S D. Molecular marker assisted selection for powdery mildew resistance gene Pm4 in wheat breeding. J Triticeae Crops, 2011, 31: 819–823 (in Chinese with English abstract) [30] 张林, 樊庆琦, 隋新霞, 李根英, 楚秀生, 黄承彦. 山东小麦品种抗白粉病基因的分子鉴定. 麦类作物学报, 2008, 28: 905–911 Zhang L, Fan Q Q, Sui X X, Li G Y, Chu X S, Huang C Y. Detection of powdery mildew resistance genes in the varieties and landraces in Shandong province. J Triticeae Crops, 2008, 28: 905–911 (in Chinese with English abstract) [31] 赵紫慧, 黄江, 陆鸣, 王晓鸣, 吴龙飞, 武小菲, 赵鑫, 李洪杰. 山东省和河北省小麦白粉菌毒性与遗传多样性分析. 作物学报, 2013, 39: 1377–1385 Zhao Z H, Huang J, Lu M, Wang X M, Wu L F, Wu X F, Zhao X, Li H J. Virulence and genetic diversity of Blumeria graminis f. sp. tritici collected from Shandong and Hebei provinces. Acta Agron Sin, 2013, 39: 1377–1385 (in Chinese with English abstract) [32] 杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46: 3354–3368 Yang L J, Zeng F S, Gong S J, Shi W Q, Zhang X H, Wang H, Xiang L B, Yu D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Sci Agric Sin, 2013, 46: 3354–3368 (in Chinese with English abstract) [33] 胡娜, 王永玖, 黄琼瑞, 常成, 司红起, 马传喜, 张海萍. 小麦抗白粉病基因的分子标记检测及其抗性评价. 分子植物育种, 2009, 7: 1093–1099 Hu N, Wang Y J, Huang Q R, Chang C, Si H Q, Ma C X, Zhang H P. Molecular marker identification of powdery mildew resistance-related genes of wheat and resistant valuation. Mol Plant Breed, 2009, 7: 1093–1099 (in Chinese with English abstract) [34] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954 Li H J, Wang X O, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[6] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[7] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[8] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[9] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[10] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[11] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[12] WANG Rui, SHI Long-Jian, TIAN Hong-Li, YI Hong-Mei, YANG Yang, GE Jian-Rong, FAN Ya-Ming, REN Jie, WANG Lu, LU Da-Lei, ZHAO Jiu-Ran, WANG Feng-Ge. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids [J]. Acta Agronomica Sinica, 2021, 47(4): 770-779.
[13] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[14] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[15] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!