Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 1-14.doi: 10.3724/SP.J.1006.2018.00001
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Next Articles
WU Qiu-Hong1,CHEN Yong-Xing1,LI Dan2,WANG Zhen-Zhong3,ZHANG Yan2,YUAN Cheng-Guo4,WANG Xi-Cheng5,ZHAO Hong5,CAO Ting-Jie5,*,LIU Zhi-Yong1,*
[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 469–487 Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: China Agriculture Press, 2003. pp 469-487 (in Chinese) [2] 杨作民, 唐伯让, 沈克全, 夏先春. 小麦抗病育种的战略问题——小麦对锈病, 白粉病第二线抗源的建立和应用. 作物学报, 1994, 20: 385–394 Yang Z M, Tang B R. Shen K Q. Xia X C. A strategic problem in wheat resistance breeding: building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin, 1994, 20: 385–394 (in Chinese with English abstract) [3] McIntosh R A, Dubcovsky J, Rogers W J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: supplement. 2017, Komugi—wheat genetic resources database, https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClass List.jsp [4] Lander E S. The new genomics: global views of biology. Science, 1996, 274: 536–539 [5] Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062 [6] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796 [7] 曹廷杰, 陈永兴, 李丹, 张艳, 王西成, 赵虹, 刘志勇. 河南小麦新育成品系白粉病抗性鉴定与分子标记检测. 作物学报, 2015, 41: 1172–1182 Cao T J, Chen Y X, Li D, Zhang Y, Wang X C, Zhao H, Liu Z Y. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan province, China. Acta Agron Sin, 2015, 41: 1172–1182 (in Chinese with English abstract) [8] 吴全安. 粮食作物种质资源抗病虫鉴定方法. 北京: 中国农业出版社, 1991 Wu Q A. Methods Used in the Evaluation of Pest Resistant Potentialities in Food Crop Germplasm Resources. Beijing: China Agriculture Press, 1991 (in Chinese) [9] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018 [10] Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet, 2004, 109: 140–145 [11] 刘金元, 刘大钧, 陶文静, 李万隆, 陈佩度. 小麦白粉病抗性基因Pm4a的RFLP标记转化为STS标记的研究. 农业生物技术学报, 1999, 7: 113–116 Liu J Y, Liu D J, Tao W J, Li W L, Chen P D. Study on the conversion of RFLP markers co-segregated with Pm4a to sequenced-tagged-site markers. J Agric Biotech, 1999, 7(2): 113–116 (in Chinese with English abstract) [12] Francis H A, Leitch A R, and Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat, Theor Appl Genet, 1995, 90: 636–642 [13] Song W, Xie C J, Du J K, Xie H, Liu Q, Ni Z F, Tsomin Y, Sun Q X, Liu Z Y. A “one-marker-for-two-genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed, 2009, 23: 357–363 [14] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832 [15] 邹喻苹, 葛颂. 新一代分子标记——SNPs及其应用. 生物多样性, 2003, 11: 370–382 Zou Y P, Ge S. A novel molecular marker: SNPs and its application. Chin Biodiv, 2003, 11: 370–382 (in Chinese with English abstract) [16] Sears E R, Briggle L W. Mapping gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci, 1969, 9: 96–97 [17] 金善宝. 中国小麦品种及其系谱. 北京: 中国农业科学出版社, 1983 Jin S B. Chinese Wheat Varieties and Their Pedigree. Beijing: China Agricultural Science and Technology Press, 1983 (in Chinese) [18] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535 Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract) [19] 袁文焕, 宋位中, 杨家秀, 李艳芳, 杨世成. 洛10、洛13致病类群的发现与研究. 中国农业科学, 1988, 21(5): 53–58 Yuan W H, Song W Z, Yang J X, Li Y F, Yang S H. The discovery and studies on physiological races of wheat stripe rust virulent to Lovrin 10 and Lovrin 13. Sci Agric Sin, 1988, 21(5): 53–58 (in Chinese with English abstract) [20] McIntosh R A, Bennett F G A. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biolo Sci, 1979, 32: 115–126 [21] Hao YF, Liu AF, Wang YH, Feng D S, Gao J R, Li X F, Liu S B, Wang H G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205–1212 [22] Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed, 2012, 29: 449–456 [23] Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585–590 [24] Fu B S, Chen Y, Li N, Ma H Q, Kong Z X, Zhang L X, Jia H Y, Ma Z Q. PmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet, 2013, 126: 913–921 [25] Niu J S, Wang B Q, Wang Y H, Cao A Z, Qi Z J, Shen T M. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90 (6)’. Plant Breed, 2008, 127: 346–349 [26] Xu W G, Li X C, Hu L, Zhang L, Zhang Z J, Dong B H, Wang S G. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed, 2010, 26: 31–38 [27] 高安礼, 何华纲, 陈全战, 张守忠, 陈佩度. 分子标记辅助选择小麦抗白粉病基因 Pm2、Pm4a和Pm21的聚合体. 作物学报, 2005, 31: 1400–1405 Gao A L, He H G, Chen Q Z, Zhang S Z, Chen P D. Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection. Acta Agron Sin, 2005, 31: 1400–1405 (in Chinese with English abstract) [28] 王俊美, 王飞, 宋玉立, 康振生, 刘红彦. 小麦已知抗白粉病基因在河南的抗性评价及Pm2基因的标记追踪. 麦类作物学报, 2009, 29: 535–539 Wang J M, Wang F, Song Y L, Kang Z S, Liu H Y. Evaluation of the known wheat powdery mildew resistance genes in Henan province and marker tracing of Pm2 gene. J Triticeae Crops, 2009, 29: 535–539 (in Chinese with English abstract) [29] 王竹林, 王艺桦, 刘联正, 奚亚军, 刘曙东. 小麦抗白粉病基因Pm4的分子标记辅助育种研究. 麦类作物学报, 2011, 31: 819–823 Wang Z L, Wang Y H, Liu L Z, Xi Y J, Liu S D. Molecular marker assisted selection for powdery mildew resistance gene Pm4 in wheat breeding. J Triticeae Crops, 2011, 31: 819–823 (in Chinese with English abstract) [30] 张林, 樊庆琦, 隋新霞, 李根英, 楚秀生, 黄承彦. 山东小麦品种抗白粉病基因的分子鉴定. 麦类作物学报, 2008, 28: 905–911 Zhang L, Fan Q Q, Sui X X, Li G Y, Chu X S, Huang C Y. Detection of powdery mildew resistance genes in the varieties and landraces in Shandong province. J Triticeae Crops, 2008, 28: 905–911 (in Chinese with English abstract) [31] 赵紫慧, 黄江, 陆鸣, 王晓鸣, 吴龙飞, 武小菲, 赵鑫, 李洪杰. 山东省和河北省小麦白粉菌毒性与遗传多样性分析. 作物学报, 2013, 39: 1377–1385 Zhao Z H, Huang J, Lu M, Wang X M, Wu L F, Wu X F, Zhao X, Li H J. Virulence and genetic diversity of Blumeria graminis f. sp. tritici collected from Shandong and Hebei provinces. Acta Agron Sin, 2013, 39: 1377–1385 (in Chinese with English abstract) [32] 杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46: 3354–3368 Yang L J, Zeng F S, Gong S J, Shi W Q, Zhang X H, Wang H, Xiang L B, Yu D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Sci Agric Sin, 2013, 46: 3354–3368 (in Chinese with English abstract) [33] 胡娜, 王永玖, 黄琼瑞, 常成, 司红起, 马传喜, 张海萍. 小麦抗白粉病基因的分子标记检测及其抗性评价. 分子植物育种, 2009, 7: 1093–1099 Hu N, Wang Y J, Huang Q R, Chang C, Si H Q, Ma C X, Zhang H P. Molecular marker identification of powdery mildew resistance-related genes of wheat and resistant valuation. Mol Plant Breed, 2009, 7: 1093–1099 (in Chinese with English abstract) [34] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954 Li H J, Wang X O, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract) |
[1] | WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859. |
[2] | WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600. |
[3] | LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714. |
[4] | YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015. |
[5] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[6] | CHEN Bing-Ru, YU Miao, GE Zhan-Yu, LI Hong-Kui, HUANG Yan, LI Hai-Qing, SHI Gui-Shan, XIE Li, XU Ning, YAN Feng, GAO Shi-Jie, ZHOU Zi-Yang, WANG Nai. Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area [J]. Acta Agronomica Sinica, 2023, 49(2): 343-353. |
[7] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[8] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
[11] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[12] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[13] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[14] | LI Jian-Ling, GONG Dan, WANG Su-Hua, CHEN Hong-Lin, CHENG Xu-Zhen, XIONG Tao, WANG Li-Xia. Construction of SNP high-density genetic map and QTL analysis of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2475-2482. |
[15] | ZHANG Xiao-Wen, LI Shi-Jiao, ZHANG Xiao-Jun, LI Xin, YANG Zu-Jun, ZHANG Shu-Wei, CHEN Fang, CHANG Li-Fang, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. QTL mapping for salt tolerance in wheat line CH7034 [J]. Acta Agronomica Sinica, 2022, 48(10): 2654-2662. |
|