Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1743-1749.doi: 10.3724/SP.J.1006.2020.01016


Analysis of the stripe rust resistance in a wheat line CB037 with high regeneration and transformation efficiency

ZHENG Yan-Yan(), HUANG De-Hua, LI Ji-Long, ZHANG Hui-Fei, BAO Yin-Guang, NI Fei, WU Jia-Jie*()   

  1. State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
    State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2020-02-24 Accepted:2020-06-02 Online:2020-11-12 Published:2020-06-15
  • Contact: Jia-Jie WU E-mail:zyy18854889722@163.com;jiajiewu@sdau.edu.cn
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08009003001);the Youth Innovation and Scientific Program of Higher Education of Shandong(2019KJF026)


Genetic transformation is used for efficient gene cloning, gene editing and gene engineering, etc. Obtaining recipient lines amenable to transformation and with pure genetic background is critical for high efficiency transformations. For recent years, the wheat inbreed line CB037 had been widely used as a recipient for transgenes and obtain its high transformation potential. Despite having stable agronomic traits, the CB037 is genetically heterogeneous for resistance to wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst). In this study, the Pst-resistant line CB037-PstR and Pst-susceptible line CB037-PstS were isolated, and their F2 population was created. Genetic analysis showed that the CB037-PstR carried a single dominant resistance gene. The identified resistance gene was mapped on the short arm of chromosome 1B using BSR-seq and molecular marker analysis. GISH results further revealed that CB037-PstR is a 1BL/1RS translocation line and likely carried Yr9. This study segregated genetic heterogeneity in CB037 for stripe rust resistance and isolated its Pst-susceptible and resistant lines. These results will facilitate trait-oriented use of CB037 in genetic engineering of wheat.

Key words: wheat transformation, 1BL/1RS translocation line, stripe rust resistance, BSR-Seq, Yr9

Fig. 1

Characteristic stripe rust infection types (ITs) of two different lines segregated from CB037 1, 2: seedlings leaf; 3: adult plant leaf."

Fig. 2

Chromosomal distribution of polymorphisms between stripe rust resistant line CB037-PstR and susceptible line CB037-PstS and the susceptible bulk in F2 individuals Vertical lines and green dots represent wheat chromosomes and centromeres, respectively. Numbers and letters on top identify each chromosome. Numbers below each chromosome mark the amount of the SNPs and InDels mapped on each chromosome. Short horizontal lines indicate positions of SNPs or InDels."

Table 1

Molecular markers developed in this study"

Molecular marker
Chromosome & position (Mb)
Forward primer
Reverse primer
Annealing temperature (℃)
Restriction enzyme
CBR: 163
CBR: 0
CBR: 207
CBR: 207
CBR: 378

Fig. 3

Detection of molecular markers (iag95, AF1/4, H20) of the stripe rust resistance gene Yr9 Letters S and R indicate phenotypes of susceptible and resistant of F2 individuals; CK is the blank control."

Fig. 4

GISH and FISH results of two different lines isolated from CB037 A, B: CB037-PstS; C, D: CB037-PstR; A & C: GISH patterns; B & D: FISH patterns. Bar = 10 μm."

[1] Hensel G. Genetic transformation of Triticeae cereals—summary of almost three-decade’s development. Biotechnol Adv, 2020,40:107484. doi: 10.1016/j.biotechadv.2019.107484.
pmid: 31751606
[2] Harwood W A. Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot, 2012,63:1791-1798.
pmid: 22140237
[3] 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014,47:4155-4171.
Ye X G, Xu H J, Du L P, He G Y, Wang K, Lin Z S. Establishment and application of large-scale transformation systems in wheat. Sci Agric Sin, 2014,47:4155-4171 (in Chinese with English abstract).
[4] Wang K, Riaz B, Ye X G. Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J, 2018,6:22-31.
[5] Hayta S, Smedley M A, Demir S U, Blundell R, Hinchliffe A, Atkinson N, Harwood W A. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat(Triticum aestivum L.). Plant Methods, 2019,15:121.
pmid: 31673278
[6] Demirer G S, Zhang H, Matos J L, Goh N S, Cunningham F J, Sung Y, Chang R, Aditham A J, Chio L, Cho M J. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol, 2019,14:456-464.
pmid: 30804481
[7] Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobact Protoc, 2015,1223:189-198.
[8] 张伟, 尹米琦, 赵佩, 王轲, 杜丽璞, 叶兴国. 我国部分主推小麦品种组织培养再生能力评价. 作物学报, 2018,44:208-217.
Zhang W, Yin M Q, Zhao P, Wang K, Du L P, Ye X G. Regeneration capacity evaluation of some largely popularized wheat varieties in China. Acta Agron Sin, 2018,44:208-217 (in Chinese with English abstract).
[9] Wang K, Liu H Y, Du L P, Ye X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017,15:614-623.
doi: 10.1111/pbi.12660 pmid: 27862820
[10] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012,38:1827-1832.
Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S. Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins of Haynaldia villosa. Acta Agron Sin, 2012,38:1827-1832 (in Chinese with English abstract).
[11] 陈龙飞, 严以苹, 汪信东, 刘艳, 张怀渝, 张增艳. 兼抗白粉病和黄矮病小麦育种材料的创造与鉴定. 植物遗传资源学报, 2013,14:925-929.
Chen L F, Yan Y P, Wang X D, Liu Y, Zhang H Y, Zhang Z Y. Development and detection of wheat breeding materials resistant to both powdery mildew and barley yellow dwarf virus. J Plant Genet Resour, 2013,14:925-929 (in Chinese with English abstract).
[12] 董鲁浩, 姚富泉, 詹悠, 李兴国, 别晓敏. 春小麦成熟胚愈伤组织诱导及再生体系的优化. 分子植物育种, 2019,18:1244-1249.
Dong L H, Yao F Q, Zhan Y, Li X G, Bie X M. Optimization of callus induction and regeneration system of mature embryo in spring wheats. Mol Plant Breed, 2019,18:1244-1249 (in Chinese with English abstract).
[13] Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Lynn E, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019,10:4023.
pmid: 31492844
[14] Liu K Y, Cao J, Yu K H, Liu X Y, Gao Y J, Chen Q, Zhang W J, Peng H R, Du J, Xin M M, Hu Z R, Guo W L, Vincenzo R, Ni Z F, Sun Q X, Yao Y Y. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol, 2019,181:179-194.
pmid: 31209125
[15] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018,44:1-12.
Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Prot, 2008,44:1-12 (in Chinese with English abstract).
[16] Engelhardt S, Stam R, Hückelhoven R. Good riddance? Breaking disease susceptibility in the era of new breeding technologies. Agronomy, 2018,8:114.
[17] Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele R T, Kang Z, Guo J. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol, 2017,175:1853-1863.
pmid: 29070517
[18] Line R F, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968-87. Technical Bulletin No. 1788, U.S. Department of Agriculture, National Technical Information Service, Springfield, VA, USA, 1992.
[19] Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet, 2005,112:41-50.
pmid: 16283230
[20] Francis H A, Leitch A R, Koebner R. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995,90:636-642.
doi: 10.1007/BF00222127 pmid: 24174021
[21] Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2007,159:249-258.
[22] Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat- Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004,109:1070-1076.
[23] Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet, 2018,131:1967-1986.
pmid: 29947816
[24] 高德荣, 张勇, 吴宏亚, 陆成彬, 张伯桥, 程顺和. 系统选择在现代小麦品种改良中的应用. 江苏农业科学, 2000, (1):21-23.
Gao D R, Zhang Y, Wu H Y, Lu C B, Zhang B Q, Cheng S H. Application of systematic selection to improvement of modern wheat varieties. Jiangsu Agric Sci, 2000, (1):21-23 (in Chinese).
[25] 曹廷杰, 陈永兴, 李丹, 张艳, 王西成, 赵虹, 刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测. 作物学报, 2015,41:1172-1182.
Cao T J, Chen Y X, Li D, Zhang Y, Wang X C, Zhao H, Liu Z Y. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan province, China. Acta Agron Sin, 2015,41:1172-1182 (in Chinese with English abstract).
[26] 刘建军, 何中虎, Pena R J, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004,30:149-153.
Liu J J, He Z H, Pena R J, Zhao Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agron Sin, 2004,30:149-153 (in Chinese with English abstract).
[27] 李亚青, 张楠, 张士昌, 何明琦, 李孟军. 黑麦1RS染色体臂Sec-1位点的研究进展. 河北农业科学, 2018,22:37-40.
Li Y Q, Zhang N, Zhang S C, He M Q, Li M J. Advances of Sec-1 locus on rye 1RS chromosome arm. Hebei Agric Sci, 2018,22:37-40 (in Chinese with English abstract).
[28] 柴建芳, 王海波, 马秀英, 张翠绵, 董福双. ω-黑麦碱基因沉默对小麦1B/1R易位系加工品质的影响. 作物学报, 2016,42:627-632.
Chai J F, Wang H B, Ma X Y, Zhang C M, Dong F S. Effect of ω-Secalin gene silencing on processing quality of wheat 1B/1R translocation line. Acta Agron Sin, 2016,42:627-632 (in Chinese with English abstract).
[29] 叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012,38:191-201.
Ye X G, She M Y, Wang K, Du L P, Xu H J. Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agron Sin, 2012,38:191-201 (in Chinese with English abstract).
[1] ZHANG Huai-Zhi,XIE Jing-Zhong,CHEN Yong-Xing,LIU Xu,WANG Yong,WU Qiu-Hong,Lu Ping,ZHANG De-Yun,LI Miao-Miao,GUO Guang-Hao,YAN Su-Hong,YANG Zhao-Sheng,ZHAO Hong,WANG Xi-Cheng,JIA Lianhe. Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq [J]. Acta Agron Sin, 2017, 43(11): 1643-1649.
[2] XU Zhong-Qing, ZHANG Shu-Ying, WANG Rui, WANG Wen-Li, ZHOU Xin-Li, YIN Jun-Liang, CHEN Jie, JING Jin-Xue. Genetic Analysis and Molecular Mapping of Stripe Rust Resistance Gene in Wheat Line M8003-5 [J]. Acta Agron Sin, 2010, 36(12): 2116-2123.
[3] YIN Gui-Hong,WANG Jian-Wu,WEN Wei-E,HE Zhong-Hu,LI Zai-Feng,et al.. Mapping of Wheat Stripe Rust Resistance Gene YrZH84 with RGAP Markers and Its Application [J]. Acta Agron Sin, 2009, 35(7): 1274-1281.
[4] HE Ming-Zhao;WANG Li-Min;ZHANG Zeng-Yan;XU Shi-Chang;WANG Li-Li;XIN Zhi-Yong. Identification and Molecular Mapping of a Novel Stripe Rust Resistance Gene in a Triticum durum-Aegilops tauschii Amphiploid CI108 [J]. Acta Agron Sin, 2007, 33(07): 1045-1050.
Full text



No Suggested Reading articles found!