Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1734-1742.doi: 10.3724/SP.J.1006.2020.02009
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SUN Qi1(), ZHAO Zhi-Chao2(), ZHANG Jin-Hui2, ZHANG Feng2, CHENG Zhi-Jun2,*(), ZOU De-Tang1,*()
[1] | 邓华凤. 中国杂交粳稻研究现状与对策. 杂交水稻, 2006,21(1):1-6. |
Deng H F. Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice, 2006,21(1):1-6 (in Chinese). | |
[2] | 朱斌成. 施用“920”对杂交水稻制种父母本农艺性状的影响. 江西农业科技, 1988, (6):4-6. |
Zhu B C. Effects of “920” on parental agronomic traits of hybrid rice seed production. Jiangxi Agric Sci Tech, 1988, (6):4-6 (in Chinese). | |
[3] | 李安祥, 李慈厚, 丁克信, 严国红. 杂交制种稻粒黑粉病的综合防治. 江苏农业科学, 1995, (4):34-36. |
Li A X, Li C H, Ding K X, Yan G H. Comprehensive control of rice seed powdery mildew of hybrid seed production. Jiangsu Agric Sci, 1995, (4):34-36 (in Chinese). | |
[4] | Li J, Yuan L P. Hybrid rice: genetics, breeding, and seed Production. In: Janick J ed. Plant Breeding Reviews. Springer, 2010. pp15-158. |
[5] | Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice(Oryza sativa L.). Chin Sci Bull, 2011,56:1476-1480. |
[6] | Heu M H, Shrestha G. Genetic analysis of sheathed panicle in a Nepalese rice cultivar Gamadi. Manila: Rice Genet I: (In 2 Parts), 1986. pp 317-322. |
[7] | Kinoshita T. Report of committee on gene symbolization, nomenclature, and linkage groups. Rice Genet Newsl, 1995,12:13-74. |
[8] | Maekawa M. Allelism test for the genes responsible for sheathed panicle. Rice Genet Newsl, 1986,3:62-63. |
[9] | Shrestha G L, Heu M H. Gene location for “Gamadiness” in rice (Oryza sativa L.). Korean J Crop Sci, 1984,29:128-135. |
[10] |
Yin H F, Gao P, Liu C W, Yang J, Liu Z C, Luo D. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta, 2013,237:15-27.
pmid: 22956125 |
[11] |
Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z, He Y Z, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011,77:475.
pmid: 21928114 |
[12] | 刘庄, 罗丽娟. 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报, 2006,22(12):409-412. |
Liu Z, Luo L J. Anatomical studies on the stem of rice of dwarf and sheathed panicle. Chin Agric Sci Bull, 2006,22(12):409-412 (in Chinese with English abstract). | |
[13] | 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金. 一种水稻全包穗突变体的发现及初步分析. 中国农学通报, 2008,24(6):222-226. |
Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. Discovery and preliminary analysis of a rice mutant with fully sheathed panicle. Chin Agric Sci Bull, 2008,24(6):222-226 (in Chinese with English abstract). | |
[14] | 朱克明. 水稻包穗基因 SHP6 的遗传与定位. 扬州大学硕士学位论文, 2006. |
Zhu K M. Genetic Analysis and Mapping of SHP6 Gene in Rice . MS Thesis of Yangzhou University, Yangzhou, Jiangsu,China, 2006 (in Chinese with English abstract). | |
[15] |
Ma J, Cheng Z J, Chen J, Shen J B, Zhang B C, Ren Y L, Ding Y, Zhou Y H, Zhang H, Zhou K N, Wang J L, Lei C L, Zhang X, Guo X P, Gao H, Bao Y Q, Wan J M. Phosphatidylserine synthase controls cell elongation especially in the uppermost internode in rice by regulation of exocytosis. PLoS One, 2016,11:e0153119.
doi: 10.1371/journal.pone.0153119 pmid: 27055010 |
[16] | Maekawa M. Genes linked with d-2 in rice. Jpn J Breed, 1992,42:212-213. |
[17] | Lestari P, Koh H J. Development of new CAPS/dCAPS and SNAP markers for rice eating quality. HAYATI J Biosci, 2013,20:15-23. |
[18] |
Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790.
pmid: 15705958 |
[19] |
Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012,7:e30798.
doi: 10.1371/journal.pone.0030798 pmid: 22292043 |
[20] | Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005,17:2243-2254. |
[21] |
Choe S, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 1998,10:231-243.
pmid: 9490746 |
[22] |
Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002,110:203-212.
doi: 10.1016/s0092-8674(02)00814-0 pmid: 12150928 |
[23] |
He J X, Gendron J M, Sun Y, Gampala S S, Gendron N, Sun C Q, Wang Z Y. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005,307:1634-1638.
doi: 10.1126/science.1107580 pmid: 15681342 |
[24] |
Zhang C, Xu Y, Guo S, Zhu J Y, Qing H, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012,8:e1002686.
pmid: 22570626 |
[25] |
Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-Loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 151:669-680.
pmid: 19648232 |
[26] |
Hu X, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B, Li J M. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet, 2013,9:e1003391.
doi: 10.1371/journal.pgen.1003391 |
[27] | Wu Y Z, Fu Y Z, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotech J, 2016,14:377-386. |
[28] |
Shi J, Dong A, Shen W H. Epigenetic regulation of rice flowering and reproduction. Front Plant Sci, 2015,5:803.
pmid: 25674094 |
[29] |
Heard E, Martienssen R A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 2014,157:95-109.
doi: 10.1016/j.cell.2014.02.045 pmid: 24679529 |
[30] |
Shi Z Y, Rao Y C, Xu J, Hu S K, Fang Y C, Yu H P, Pan J J, Liu R F, Ren D Y, Wang X H, Zhu Y Z, Li Z, Dong G J, Zhang G H, Zeng D L, Guo L B, Hu Z, Qian Q. Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Sci Bull, 2015,60:905-915.
doi: 10.1007/s11434-015-0798-8 |
[31] |
Guo M, Yang Y H, Liu M, Meng Q C, Zeng X H, Dong L X, Tang S Z, Gu M H, Yan C J. Clustered spikelets 4, encoding a putative cytochrome P450 protein CYP724B1, is essential for rice panicle development. Chin Sci Bull, 2014,59:4050-4059.
doi: 10.1007/s11434-014-0568-z |
[32] |
Tong H, Chu C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018,23:1016-1028.
doi: 10.1016/j.tplants.2018.08.007 pmid: 30220494 |
[33] |
Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006,18:442-456.
doi: 10.1105/tpc.105.038455 pmid: 16399803 |
[34] |
Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006,47:181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061 |
[35] |
Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol, 2004,55:687-700.
doi: 10.1007/s11103-004-1692-y pmid: 15604710 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[15] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
|