Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1734-1742.doi: 10.3724/SP.J.1006.2020.02009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.)

SUN Qi1(), ZHAO Zhi-Chao2(), ZHANG Jin-Hui2, ZHANG Feng2, CHENG Zhi-Jun2,*(), ZOU De-Tang1,*()   

  1. 1 Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-02-14 Accepted:2020-06-02 Online:2020-11-12 Published:2020-06-22
  • Contact: Zhi-Jun CHENG,De-Tang ZOU E-mail:517596634@qq.com;zhaozhichao@caas.cn;chengzhijun@caas.cn;zoudtneau@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871603)

Abstract:

The elongation and development of rice uppermost internode plays an important role in plant architecture development. In general, the sheathed panicle phenomenon in rice sterility line is caused by the elongation and development hindrance of the uppermost internode. The study on molecular mechanisms underlying sheathed panicle would be helpful for improving plant architecture in sterility line. At the present study, we reported the study on a sheathed panicle mutant, named sui2, originated from a tissue-culture progeny. Its uppermost internode severely shortened, resulted in its pancleen closed by flag leaf sheath, without significantly length alternation at other internodes. The cytological analysis demonstrated that the shorten of the uppermost internode is caused by insufficient elongation of the parenchyma cells. Genetic analysis of the progeny derived from the cross-combination of sui2 and IRAT129 revealed that sui2 is a single gene dominant mutant. Linkage analysis to 608 normal individuals from F2 generation showed that SUI2 was located in a 110 kb region delimited by InDel marks S4-14.1 and S4-14.2 on the end of chromosome 4 long arm. The annotated genes on this region did not display any difference in genomic sequence, while the expression level of LOC_Os04g39430, encoding a cytochrome P450 protein and an allele of D11, increased by 264 times expression amount in mutant. Analysis of qRT-PCR for several crucial genes on BR (brasssinolide) signaling pathway showed that in mutant the expression level of all these genes increased, indicating that genes in BR signaling pathway may be involved in the regulation to the elongation and development of uppermost internode.

Key words: rice, sheathed panicle, fine mapping, SUI2, BR signaling pathway

Table 1

Newly developed polymorphic InDel and SNP primers used in fine mapping"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
S4-13 CGACGATATCCGTGCATCACC ACGATTGCATCTGCGTCACACC
S4-14 AGTGATGCACTTCTGTTTGTCC GGTCCTCTTGTTCAAGTCAAACC
S4-14.1 AGAAGACGACGACTTGGACA TAGACGACCTGGGTTCGAAG
S4-14.2 AAATTCCACATGCCAATTCC ATTGAGGCTCGATCCATGAC
S4-14.3 CTTTTGCGAGGGGTCTCATA CATGGGGCTTTTGCACTAAT
S4-14.4 GCCACAAACTCCCAGCTAAC GTGGAGACTGGAGAGGTGGA
S4-15 ACCTTTTCTTGGCTTGAGGG GCTTTTGCTACTTTTGGGGG

Table 2

Primers used for qRT-PCR"

引物名
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
LOC_Os04g39360 TGATCTCGATGGCGATCACC GCTCCTCGCAGTAGACCATC
LOC_Os04g39380 CTAATTCATCGCCACGTACAAACG TGATCACCGGCTATCAACAGAAAC
LOC_Os04g39410 CGATTGCCATGAGTTCACCAAGC TGGCGTCTCGGACCACAATTTC
LOC_Os04g39420 GCGGGTATACGCAGGTTTATGC ACTCGTTGAAGATGGCCACAGC
LOC_Os04g39430 TGAGGTTCCTCAGTCCTCATGC AAACACCCTCCCATACCTGGAG
LOC_Os04g39440 TGTGTCACACTGCCACTTACCC TGGAGCAACTACGTTTCAGTCAGC
LOC_Os04g39444 CCAAGATGAAGCTCGTCAGGTTTC AGTCTTCAAGTGGGTGTTCATGC
LOC_Os04g39450 GGCCTTCTATGCATCTCTGAGC TGATGGAGTTGCTGCCATCTTC
LOC_Os04g39470 AGCTCACGAATCACATGGTGTAGC ATGTGGATCATGGCGTGCTTCG
LOC_Os04g39489 TCCTCTTGGAAATTCAGGACACAC GGACGCCTTCTTCATCGTCTTG
BRD1 ATTATGATCCATTCCTGTACCCTG TCTTCCTCCCATCTGTATTGAGT
BRD2 TCAAGGCCACACAGGGTGAATC GCACAGCCACAGTGGATAAACCTC
DWARF4 GATGGGCTCTGAAACAATCTAACCTT TCCCCTCTTAGCCTTTGTCTCCTT
BAK1 ACTCTGGTCAATCCGTGCACTTG AGTGCAGCATTCCCAAGATCAAC
BRI1 TCGTTGGCTCAGTTCTTGGAGAG TCTCTTGGCTAGAACAAGAAGTGC
BU1 CGACGACGAAGCTGCTGAAGGA AGGAGGCTGCGGATGATCTCG
LIC1 CTGCACCACTTGCTGCCCCTAC TGTTCCCAACAGATTCCTCAAACATC
TUD1 GTCCGCCTCATCCGCATACTC CGCACCGATGCTAACAATCAAAC
BZR1 CGTTCCGGCACCCCTTCTTC TGGCGTCACCCTCCCCTTGT
Ubiquitin AACCAGCTGAGGCCCAAGA ACGATTGATTTAACCAGTCCATGA

Fig. 1

Phenotypic comparison between wild type and mutant sui2 A: Phenotypes of WT (left) and sui2 (right) plants at rippen period; B: Phenotype comparison of the sheathed panicle of WT (left) and sui2 (right) at the maturation period; C: Comparison of internodes between WT (left) and sui2 (right), from left to right is the uppermost internode, penultimate internode, antepenult internode, fourth internode from top down; D, E: Transverse sections of the first internode of WT (D) and sui2 (E); F: Longitudinal sections of the uppermost internode of wild type and sui2; G, H: The leaf angles between the last and penultimate leaf in the WT (G) and sui2 (H) at the seedling stage. Scale bars: (A) 15 cm; (B) 5 cm; (C) 5 cm; (D, E) 200 μm; (F) 50 μm."

Table 3

Comparison of agronomic traits between wild type Kitaake and mutant sui2"

农艺性状Agronomic trait Kitaake sui2 P
株高Plant height (cm) 63.73±2.55 43.08±3.79 *P < 0.05
分蘖数Tiller number 14.40±2.01 25.00±3.43 **P < 0.01
每穗粒数Number of spikelets per panicle 42.75±8.70 27.10±3.41 **P < 0.01
千粒重1000-grain weight (g) 4.415±0.02 4.852±0.06 **P < 0.01
结实率Seed setting rate (%) 0.969±0.05 0.837±0.08 **P < 0.01
粒长Seed length (mm) 7.06±0.33 8.10±0.22 **P < 0.01
粒宽Seed weight (mm) 3.26±0.10 3.47±0.12 **P < 0.01
粒厚Seed thickness (mm) 2.20±0.07 2.14±0.07 **P < 0.01
剑叶宽Flag leaf length (cm) 1.10±0.08 0.90±0.08 **P < 0.01
倒一节间长Length of the uppermost internode (cm) 29.61±3.27 14.68±2.57 **P < 0.01

Fig. 2

Comparisons of cell size and number of the parenchyma cells in the uppermost internode between wild type and sui2 A: Comparisons of the length and width of stem parenchyma cells from longitudinal sections of the uppermost internode in wild type and sui2; B: comparison of cell numbers of the radius in the transverse sections of the uppermost internode in wild type and sui2. * represents significantly different at P < 0.05; ** represents significantly different at P < 0.01."

Fig. 3

Schematic diagram of map-based cloning on the candidate gene SUI2 A: Rough mapping of the gene SUI2 flanked by two markers S4-14 and S4-15; B: SUI2 was fine mapped to a 110 kb interval delimited by two markers S4-14.1 and S4-14.2 region; C: 14 ORFs and 2 transposons within the fine-mapped fragment. The molecular markers used in linkage analysis were indicated above the bold lines, and the umbers beneath the bold lines represented the recombinants identified by the corresponding markers."

Table 4

Gene annotations in the mapping interval"

基因名称
Locus name
基因注释
Gene annotation
LOC_Os04g39360 Heavy metal transport/detoxification protein, putative, expressed
LOC_Os04g39370 Heavy metal associated domain containing protein, expressed
LOC_Os04g39380 Heavy metal transport/detoxification protein, putative, expressed
LOC_Os04g39390 Retrotransposon protein, putative, unclassified, expressed
LOC_Os04g39400 Retrotransposon protein, putative, unclassified, expressed
LOC_Os04g39410 Pentatricopeptide, putative, expressed
LOC_Os04g39420 6-phosphofructokinase 2, putative, expressed
LOC_Os04g39430 D11; cytochrome P450; small grain 4; clustered spikelets 4
LOC_Os04g39440 Ras-related protein, putative, expressed
LOC_Os04g39444 LSM domain containing protein, expressed
LOC_Os04g39450 Expressed protein
LOC_Os04g39460 NBS-LRR type disease resistance protein, putative, expressed
LOC_Os04g39470 Transcription factor with an MYB domain
LOC_Os04g39489 Amino acid transporter, putative, expressed
LOC_Os04g39510 Expressed protein
LOC_Os04g39520 ZOS4-08-C2H2 zinc finger protein, expressed

Fig. 4

Expression level of candidate genes by qRT-PCR"

Fig. 5

SUI2 expression levels of the different tissues in WT and sui2 mutant"

Fig. 6

Expression levels of BR-related genes in WT and sui2 A: Relative expression levels of the genes related to BR biosynthesis in WT and sui2 culms. B: Relative expression levels of the genes related to BR signaling in the young WT and sui2 young culms. * represents significantly different at P < 0.05; ** represents significantly different at P < 0.01."

[1] 邓华凤. 中国杂交粳稻研究现状与对策. 杂交水稻, 2006,21(1):1-6.
Deng H F. Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice, 2006,21(1):1-6 (in Chinese).
[2] 朱斌成. 施用“920”对杂交水稻制种父母本农艺性状的影响. 江西农业科技, 1988, (6):4-6.
Zhu B C. Effects of “920” on parental agronomic traits of hybrid rice seed production. Jiangxi Agric Sci Tech, 1988, (6):4-6 (in Chinese).
[3] 李安祥, 李慈厚, 丁克信, 严国红. 杂交制种稻粒黑粉病的综合防治. 江苏农业科学, 1995, (4):34-36.
Li A X, Li C H, Ding K X, Yan G H. Comprehensive control of rice seed powdery mildew of hybrid seed production. Jiangsu Agric Sci, 1995, (4):34-36 (in Chinese).
[4] Li J, Yuan L P. Hybrid rice: genetics, breeding, and seed Production. In: Janick J ed. Plant Breeding Reviews. Springer, 2010. pp15-158.
[5] Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice(Oryza sativa L.). Chin Sci Bull, 2011,56:1476-1480.
[6] Heu M H, Shrestha G. Genetic analysis of sheathed panicle in a Nepalese rice cultivar Gamadi. Manila: Rice Genet I: (In 2 Parts), 1986. pp 317-322.
[7] Kinoshita T. Report of committee on gene symbolization, nomenclature, and linkage groups. Rice Genet Newsl, 1995,12:13-74.
[8] Maekawa M. Allelism test for the genes responsible for sheathed panicle. Rice Genet Newsl, 1986,3:62-63.
[9] Shrestha G L, Heu M H. Gene location for “Gamadiness” in rice (Oryza sativa L.). Korean J Crop Sci, 1984,29:128-135.
[10] Yin H F, Gao P, Liu C W, Yang J, Liu Z C, Luo D. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta, 2013,237:15-27.
pmid: 22956125
[11] Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z, He Y Z, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011,77:475.
pmid: 21928114
[12] 刘庄, 罗丽娟. 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报, 2006,22(12):409-412.
Liu Z, Luo L J. Anatomical studies on the stem of rice of dwarf and sheathed panicle. Chin Agric Sci Bull, 2006,22(12):409-412 (in Chinese with English abstract).
[13] 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金. 一种水稻全包穗突变体的发现及初步分析. 中国农学通报, 2008,24(6):222-226.
Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. Discovery and preliminary analysis of a rice mutant with fully sheathed panicle. Chin Agric Sci Bull, 2008,24(6):222-226 (in Chinese with English abstract).
[14] 朱克明. 水稻包穗基因 SHP6 的遗传与定位. 扬州大学硕士学位论文, 2006.
Zhu K M. Genetic Analysis and Mapping of SHP6 Gene in Rice . MS Thesis of Yangzhou University, Yangzhou, Jiangsu,China, 2006 (in Chinese with English abstract).
[15] Ma J, Cheng Z J, Chen J, Shen J B, Zhang B C, Ren Y L, Ding Y, Zhou Y H, Zhang H, Zhou K N, Wang J L, Lei C L, Zhang X, Guo X P, Gao H, Bao Y Q, Wan J M. Phosphatidylserine synthase controls cell elongation especially in the uppermost internode in rice by regulation of exocytosis. PLoS One, 2016,11:e0153119.
doi: 10.1371/journal.pone.0153119 pmid: 27055010
[16] Maekawa M. Genes linked with d-2 in rice. Jpn J Breed, 1992,42:212-213.
[17] Lestari P, Koh H J. Development of new CAPS/dCAPS and SNAP markers for rice eating quality. HAYATI J Biosci, 2013,20:15-23.
[18] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790.
pmid: 15705958
[19] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012,7:e30798.
doi: 10.1371/journal.pone.0030798 pmid: 22292043
[20] Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005,17:2243-2254.
[21] Choe S, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 1998,10:231-243.
pmid: 9490746
[22] Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002,110:203-212.
doi: 10.1016/s0092-8674(02)00814-0 pmid: 12150928
[23] He J X, Gendron J M, Sun Y, Gampala S S, Gendron N, Sun C Q, Wang Z Y. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005,307:1634-1638.
doi: 10.1126/science.1107580 pmid: 15681342
[24] Zhang C, Xu Y, Guo S, Zhu J Y, Qing H, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012,8:e1002686.
pmid: 22570626
[25] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-Loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 151:669-680.
pmid: 19648232
[26] Hu X, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B, Li J M. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet, 2013,9:e1003391.
doi: 10.1371/journal.pgen.1003391
[27] Wu Y Z, Fu Y Z, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotech J, 2016,14:377-386.
[28] Shi J, Dong A, Shen W H. Epigenetic regulation of rice flowering and reproduction. Front Plant Sci, 2015,5:803.
pmid: 25674094
[29] Heard E, Martienssen R A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 2014,157:95-109.
doi: 10.1016/j.cell.2014.02.045 pmid: 24679529
[30] Shi Z Y, Rao Y C, Xu J, Hu S K, Fang Y C, Yu H P, Pan J J, Liu R F, Ren D Y, Wang X H, Zhu Y Z, Li Z, Dong G J, Zhang G H, Zeng D L, Guo L B, Hu Z, Qian Q. Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Sci Bull, 2015,60:905-915.
doi: 10.1007/s11434-015-0798-8
[31] Guo M, Yang Y H, Liu M, Meng Q C, Zeng X H, Dong L X, Tang S Z, Gu M H, Yan C J. Clustered spikelets 4, encoding a putative cytochrome P450 protein CYP724B1, is essential for rice panicle development. Chin Sci Bull, 2014,59:4050-4059.
doi: 10.1007/s11434-014-0568-z
[32] Tong H, Chu C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018,23:1016-1028.
doi: 10.1016/j.tplants.2018.08.007 pmid: 30220494
[33] Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006,18:442-456.
doi: 10.1105/tpc.105.038455 pmid: 16399803
[34] Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006,47:181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061
[35] Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol, 2004,55:687-700.
doi: 10.1007/s11103-004-1692-y pmid: 15604710
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!