Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1463-1471.doi: 10.3724/SP.J.1006.2015.01463

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Development and Utilization of CAPS/dCAPS Markers Based on the SNPs Lying in Soybean Cyst Nematode Resistant Genes Rhg4

SHI Xue-Hui1,LI Ying-Hui1,*,YU Bai-Shuang2,GUO Yong1,WANG Jia-Jun2,QIU Li-Juan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology in Beijing, Agriculture of Ministry / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; 2 Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
  • Received:2015-03-20 Revised:2015-06-01 Online:2015-10-12 Published:2015-06-29
  • Contact: 李英慧, E-mail: liyinghui@caas.cn; 邱丽娟, E-mail: qiulijuan@caas.cn E-mail:shixh_1988@163.com

Abstract:

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most destructive diseases which largely suppressed soybean production worldwide. Rhg4 was one of two major resistant loci for SCN. In this study two nonsynonymous SNPs (Rhg4-389-G/C and Rhg4-1165-T/A) in GmSHMT were deduced to confer SCN resistance or susceptibility. One CAPS marker (Rhg4-389) and one dCAPS marker (Rhg4-1165) with the advantages of rapid, economic, simple and easy way to use were developed based on two nonsynonymous SNPs (Rhg4-389-G/C and Rhg4-1165-T/A), respectively. Then, a total of 193 soybean cultivars mainly from SCN-applied-core collection were genotyped by markers Rhg4-389 and Rhg4-1165. Linkage disequilibrium (LD) analysis indicated pairwise of Rhg4-389 and Rhg4-1165 was in significant LD (P-value = 0.0001) with r2 of 0.87. Among four haplotypes detected in this panel, Rhg4-389-G/Rhg4-1165-T and Rhg4-389-C/Rhg4-1165-A were predominant; while both Rhg4-389-G/Rhg4-1165-A and Rhg4-389-C/Rhg4-1165-T were rare, which only discovered in the resistant cultivars from China. Rhg4-389-G and Rhg4-1165-T alleles mainly occurred in resistant cultivars, and almost coincided with Rhg4-389-G/Rhg4-1165-T haplotype. Of 101 resistant cultivars with Rhg4-389-G/Rhg4-1165-T haplotype, 94.1% (95) were resistant to SCN. In this study, we not only developed convenient CAPS/dCAPS markers for marker assisted selection (MAS) breeding, but also dissected the genetic architecture of Rhg4 locus among SCN-applied-core collection. Hopefully, this study will provide helpful information for improving the utilization efficiency of resistant resources in soybean breeding.

Key words: Soybean cyst nematode, Rhg4, CAPS/dCAPS marker, Haplotype, Marker assisted selection

[1]Chen S Y, Porter P M, Reese C D, Stienstra W C. Crop sequence effects on soybean cyst nematode and soybean and corn yields. Crop Sci, 2001, 41: 1843–1849



[2]大豆种质抗胞囊线虫鉴定研究协作组. 大豆种质资源对大豆胞囊线虫1、3和4号生理小种的抗性鉴定. 大豆科学, 1993, 12: 91–99



Coordinative Group of Evaluation of SCN. Evaluation of soybean germplasm for resistance to race 1, 3 and 4 of the soybean cyst nematode. Soybean Sci, 1993, 12: 91–99



[3]Ma Y S, Wang W H, Wang L X, Ma F M, Wang P W, Chang R Z, Qiu L J. Characteristics of soybean genetic diversity and establishment of applied core collection for Chinese soybean cyst nematode resistance. J Integr Plant Biol, 2006, 48: 722–731



[4]袁翠平, 沈波, 董英山. 中国大豆抗(耐)胞囊线虫病品种及其系谱分析. 大豆科学, 2009, 28: 1049–1053



Yuan C P, Shen B, Dong Y S. Released soybean varieties resistant to cyst nematode in China and their resistance genetic derivation. Soybean Sci, 2009, 28(6): 1049–1053



[5]Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, Mellouki T E, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem K. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492: 256–260



[6]Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J, 1993, 4: 403–410



[7]Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J, 1998, 14: 381–385



[8]Neff M M, Neff J D, Chory J, Pepper A E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J, 1998, 14: 387–392



[9]Weiland J J, Yu M H. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci, 2003, 43: 1814–1818



[10]Komori T, Nitta N. Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci, 2005, 55: 93–98



[11]Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome, 1999, 42: 1111–1116



[12]王立浩, 王萱, 张宝玺, 毛胜利, 郭家珍. 利用CAPS标记辅助辣椒PVY抗性基因PVr4转育的研究. 辣椒杂志, 2007, (4): 1–3



Wang L H, Wang X, Zhang B X, Mao S L, Guo J Z. Application of CAPS marker in assisting selection of PVY resistance PVr4 gene in pepper. J China Capsicum, 2007, (4): 1–3



[13]王立浩, 张宝玺, Caranta C, 毛胜利, Palloix A. 利用分子标记对辣椒抗马铃薯Y病毒的3个QTLs进行选择. 园艺学报, 2008, 35: 53–58



Wang L H, Zhang B X, Caranta C, Mao S L, Palloix A. Molecular markers assisted selection for three QTLs resistant to PVY in pepper. Acta Hort Sin, 2008, 35: 53–58



[14]Lee G A, Koh H J, Chung H K, Dixit A, Chung J W, Ma K H, Lee S Y, Lee J R, Lee G S, Gwag H G, Kim T S, Park Y J. Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice. Mol Breed, 2009, 24: 93–101



[15]Jun T H, Mian M A R, Kang S T, Michel A P. Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B. Theor Appl Genet, 2012, 125: 1159–1168



[16]Stöckel J, Bennewitz S, Hein P, Oelmüller R. The evolutionarily conserved tetratrico peptide repeat protein pale yellow green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol, 2006, 141: 870–878



[17]Zimmerl S, Lafferty J, Buerstmayr H. Assessing diversity in Triticum durum cultivars and breeding lines for high versus low cadmium content in seeds using the CAPS marker usw47. Plant Breed, 2014, 133: 712–717



[18]Chen Y W, Wang D C, Arelli P, Ebrahimi M, Nelson R L. Molecular marker diversity of SCN-resistant sources in soybean. Genome, 2006, 49: 938–949



[19]Riggs R D, Schmitt D P. Complete characterization of the race scheme for Heterodera glycines. J Nematol, 1988, 20(3): 392



[20]Golden A M. Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glyecines). Plant Dis Rep, 1970, 54: 544–546



[21]Schmitt D P, Shannon G. Differentiating soybean responses to Heterodera glycines races. Crop Sci, 1992, 32: 275–277



[22]Clarke K R, Gorley R N. Primer v5: User Manual/Tutorial. Primer-E Limited, 2001



[23]Woffelman C. DNAMAN for Windows, version 2.6. Lynon Biosoft, Institute of Molecular Plant Sciences, Leiden University, the Netherlands, 1994



[24]Weir B S. Genetic Data Analysis II. Sunderland, Massachusetts, Sinauer Associates, 1996



[25]Fisher R A. The mathematical distribution used in the common tests of significance. Econometrica, 1935, 98: 39–54



[26]梁青山. Excel统计函数在卡方检验中的应用. 职业与健康, 2004, 20(5): 105–105



Liang Q S. Excel statistical function in the application of the chi-square test. Occup Health, 2004, 20(5):105–105



[27]Young N D. A cautiously optimistic vision for marker-assisted breeding. Mol Breed, 1999, 5: 505–510



[28]Mudge J, Cregan P B, Kenworthy J P, Kenworthy W J, Orf J H, Young N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611–1615



[29]Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811–818



[30]王文辉, 邱丽娟, 常汝镇, 马凤鸣, 谢华, 林凡云. 中国大豆种质抗SCN基因rhg1位点SSR标记等位变异特点分析. 大豆科学, 2003, 22: 246–250



Wang W H, Qiu L J, Chang R Z, Ma F M, Xie H, Lin F Y. Characteristics of alleles at Satt309 locus associated with rhg1 gene resistant to SCN of Chinese soybean germplasm. Soybean Sci, 2003, 22: 246–250



[31]李英慧, 袁翠平, 张辰, 李伟, 南海洋, 常汝镇, 邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析. 遗传, 2009, 12: 1259–1264



Li Y H, Yuan C P, Zhang C, Li W, Nan H Y Chang R Z, Qiu L J. Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode. Hereditas(Beijing), 2009, 12: 1259–1264 (in Chinese with English abstract)



[32]南海洋, 李英慧, 常汝镇, 邱丽娟. 基于大豆胞囊线虫病抗性候选基因rhg1的InDel标记开发与鉴定. 作物学报, 2009, 35: 1236–1243



Nan H Y, Li Y H, Chang R Z, Qiu L J. Development and identification of InDel markers based on rhg1 gene for resistance to soybean cyst nematode(Heterodera glycines Ichinohe). Acta Agron Sin, 2009, 35: 1236–1243 (in Chinese with English abstract)



[33]Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. ’Forrest’resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet, 2001, 103: 710–717



[34]Brucker E, Carlson S, Wright E, Niblack T, Diers B. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genet, 2005, 111: 44–49



[35]Cook D E, Lee T G, Guo X, Melito S, Wang K, Bayless A M, Wang J, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206–1209



[36]Li Y H, Zhao S C, Ma J X, Li D, Yan L, Li J, Qi X T, Guo X, Zhang L, He W, Chang R Z, Liang Q, Guo Y, Ye C, Wang X B, Tao Y, Guan R, Wang J Y, Liu Y L, Jin L G, Zhang X, Liu Z, Zhang L, Chen J, Wang K J, Nielsen R, Li R Q, Chen P Y, Li W B, Reif J C, Purugganan M, Wang J, Zhang M C, Wang J, Qiu L J. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom, 2013, 14: 579



[37]Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, Li J, Jian M, Wang J, Shao G H, Wang J, Sun S S, Zhang G Y. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059



[38]Li Y H, Zhou G Y, Ma J X, Jiang W K, Jin L G, Zhang Z H, Guo Y, Zhang J B, Sui Y, Zheng L T, Zhang S S, Zuo Q, Shi X H, Li Y F, Zhang W K, Hu Y, Kong G, Hong H L, Liu Z X, Wang Y, Ruan H, Yeung C K L, Liu J, Wang H, Zhang L, Guan R, Wang K J, Li W B, Chen S Y, Chang R Z, Jiang Z, Jackson S A, Li R Q, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol, 2014, 32: 1045–1052



[39]Smith S M, Maughan P J. SNP Genotyping Using KASPar Assays. Plant Genotyping, 2015: 243–256



[40]Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z L, Liu Z X, Nan H Y, Chang R Z and Qiu L J. Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 2009, 24: 63–76



[41]Hiremath P J, Kumar A, Penmetsa R V, Farmer A, Schlueter J A, Chamarthi S K, Whaley A M, Carrasquilla-Garcia N, Gaur P M, Upadhyaya H D, Kavi K P B, Shah T M, Cook D R, Varshney R K. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J, 2012, 10: 716–732

[1] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[2] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[3] LIAN Yun, WANG Jin-She, WEI He, LI Jin-Ying, GONG Gui-Ming, WANG Shu-Feng, ZHANG Jing-Peng, LI Mao-Lin, GUO Jian-Qiu, LU Wei-Quo. Distribution survey of soybean cyst nematode of new race X12 in Gujiao city, Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(2): 237-244.
[4] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
[5] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[6] Ling QIAO,Cheng LIU,Xing-Wei ZHENG,Jia-Jia ZHAO,Bao-Hua SHANG,Xiao-Fei MA,Lin-Yi QIAO,Hong-Mei GE,Hu-Tai JI,Jian-Jun LIU,Jian-Cheng ZHANG,Jun ZHENG. Genetic Analysis of Haplotype-blocks from Wheat Founder Parent Linfen 5064 [J]. Acta Agronomica Sinica, 2018, 44(6): 931-937.
[7] Yu TIAN,Lei YANG,Ying-Hui LI,Li-Juan QIU. Development and Utilization of KASP Marker for SCN3-11 Locus Resistant to Soybean Cyst Nematode [J]. Acta Agronomica Sinica, 2018, 44(11): 1600-1611.
[8] Yun-Yan FEI, Jie YANG, Fang-Jun FAN, Fang-Quan WANG, Wen-Qi LI, Jun WANG, Jin-Yan ZHU, Wei-Gong ZHONG. Genetic Analysis of Imazethapyr Resistance in Rice and the Closely Linked Marker Selection and Application [J]. Acta Agronomica Sinica, 2018, 44(05): 716-722.
[9] ZHANG Xue-Yong, MA Lin, ZHENG Jun. Characteristics of Genes Selected by Domestication and Intensive Breeding in Crop Plants [J]. Acta Agron Sin, 2017, 43(02): 157-170.
[10] YI Chuan-Deng*, WANG De-Rong, JIANG Wei, Li Wei, CHENG Xiao-Jun, WANG Ying, ZHOU Yong, LIANG Guo-Hua, and GU Ming-Hong. Development of Functional Markers and Identification of Haplotypes for Rice Grain Shape Gene GW8 [J]. Acta Agron Sin, 2016, 42(09): 1291-1297.
[11] LIU Bo, LI Ying-Hui, YU Bai-Shuang, WANG Jia-Jun, LIU Yu-Lin, CHANG Ru-Zhen, QIU Li-Juan. Genetic Analysis of Immunity to Soybean Cyst Nematode Race 3 in Elite Line Zhongpin 03-5373 [J]. Acta Agron Sin, 2015, 41(01): 15-21.
[12] WANG Gen-Ping,BI Hui-Hui,SUN Yong-Wei,WANG Cheng-She,XIA Lan-Qin. Characterization of Tamyb10 Haplotypes and Their Association with Pre-harvest Sprouting Resistance in a Set of Chinese Red-Grained Wheats [J]. Acta Agron Sin, 2014, 40(06): 984-993.
[13] JIANG Xiao-Dong,GUO Gang-Gang,ZHANG Jing. Association of Genetic Diversity for Amy6-4 Gene with α-Amylase Activity in Germplasm of Barley [J]. Acta Agron Sin, 2014, 40(02): 205-213.
[14] HAN Shu-Xiao,LIU Quan-Lan,DONG Jie,CHEN Jian-Sheng,TIAN Ji-Chun. Genotypic Diversity at the Lr10 Locus for Leaf Rust Resistance in Various Hexaploid Wheat Varieties (lines) [J]. Acta Agron Sin, 2013, 39(11): 1983-1991.
[15] ZHANG Shan-Shan,LI Ying-Hui,LI Jin-Ying,QIU Li-Juan. Genetic Dissection of Elite Line Zhongpin 03-5373 Pedigree and Identification of Candidate Markers Related to Resistance to Soybean Cyst Nematode [J]. Acta Agron Sin, 2013, 39(10): 1746-1753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!