Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 2045-2052.doi: 10.3724/SP.J.1006.2021.02079

• RESEARCH NOTES • Previous Articles     Next Articles

Cloning and functional identification of gene OsATS in rice

LI Xiao-Xu(), WANG Rui(), ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao*()   

  1. College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2020-11-21 Accepted:2021-03-22 Online:2021-10-12 Published:2021-04-07
  • Contact: GE Rong-Chao E-mail:jiandanxiaoxiao@163.com;1915435558@qq.com;grcgp@sina.com
  • Supported by:
    National Natural Science Foundation of China(30900104);Natural Science Foundation of Hebei Province(C2016205158)

Abstract:

The plant embryo specific protein ATS3 is closely related to osmotic stress response in plants. Here, the stress resistance related gene OsATS was preliminarily studied in rice. Fluorescence quantitative PCR showed that the relative expression level of OsATS increased significantly after salt stress in rice. The overexpression vector of OsATS was constructed and transformed into Arabidopsis thaliana. The stress resistance test revealed that the overexpression of OsATS gene could significantly improve the salt tolerance of Arabidopsis thaliana at germination and adult stages. After that, the overexpression vector p1300-35s:OSATS and RNA interference vector pTCK303-OsATS-RNAi were transferred into rice. The stress tolerance analysis indicated that the salt tolerance of OsATS overexpression rice lines significantly increased at germination stage and seedling stage, while the salt tolerance of OsATS RNAi rice lines significantly decreased. Results of qRT-PCR and physiological index detection demonstrated that the relative expression levels of OSATS gene might regulate the protein content of proline and LEA cells by regulating the expression of OsP5CS1, OsLEA3-1 and OsPDH, thus affecting the salt tolerance in rice. This study preliminarily revealed the stress resistance function of OSATS gene, which laid a foundation for improving rice stress resistance by adjusting the relative expression level of OSATS gene.

Key words: rice, OsATS genes, overexpression, RNA interference, physiological indexes

Fig. 1

Relative expression levels of OsATS genes under NaCl stress in rice The significant difference is evaluated by the Student’s t-test. *P< 0.05, **P < 0.01."

Fig. 2

Subcellular localization of OsATS in tobacco epidermis"

Fig. 3

PCR detection of OsATS overexpression in Arabidopsis"

Fig. 4

Relative expression levels of OsATS genes in Arabidopsis The significant difference is evaluated by the Student’s t-test. *** P < 0.001."

Fig. 5

Seed germination rate of OsATS overexpression under the salt stress in Arabidopsis The significant difference is evaluated by the Student's t-test. * P < 0.05, ** P < 0.01."

Fig. 6

Salt tolerance detection of OsATS overexpression of adult plants in Arabidopsis"

Fig. 7

Relative expression levels of OsATS overexpressed and OsATS-RNAi transgenic plants in rice WT: wild type rice; OX: OsATS overexpression transgenic rice lines; Ri: RNAi transgenic rice lines; The significant difference is evaluated by the Student’s t-test. *** P < 0.001."

Fig. 8

Seed germination rate of OsATS overexpressed and OsATS-RNAi transgenic plants under NaCl stress in rice"

Fig. 9

Salt tolerance detection of the OsATS transgenic rice"

Fig. 10

Physiological indexes detection of the OsATS overexpression and OsATS-RNAi transgenic plants in rice A: proline content; B: MDA content; C: relative electrolyte leakage; The significant difference is evaluated by the Student’s t-test. * P< 0.05, ** P < 0.01, *** P < 0.001."

Fig. 11

Relative expression levels of the salt tolerance related genes in OsATS transgenic rice The significant difference is evaluated by the Student’s t-test. * P < 0.05, ** P < 0.01, *** P < 0.001."

[1] 艾爱华. OsRab7对水稻花粉发育及抗盐性的影响. 南昌大学硕士学位论文, 江西南昌, 2016.
Ai A H. Effect of OsRab7 on Pollen Development and Salt Resistance in Rice. MS Thesis of Nanchang University, Nanchang, Jiangxi, China, 2016 (in Chinese with English abstract).
[2] 朱德峰, 王亚梁. 全球水稻生产时空变化特征分析. 中国稻米, 2021, 27(1):7-8.
Zhu D F, Wang Y L. Analysis of characteristics of temporal and spatial variation of rice production in the world. China Rice, 2021, 27(1):7-8.
[3] 李小兵, 黎华寿, 张泽民, 陈桂葵. 水稻盐分胁迫研究进展. 广东农业科学, 2014, 41(12):6-11.
Li X B, Li H S, Zhang Z M, Chen G K. Research progress on salt-stress in rice. Guangdong Agric Sci, 2014, 41(12):6-11 (in Chinese with English abstract).
[4] Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophs Res Commun, 2018, 495:286-291.
doi: 10.1016/j.bbrc.2017.11.043
[5] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2):154-158.
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005, 23(2):154-158 (in Chinese with English abstract).
[6] 张建锋, 张旭东, 周金星, 刘国华, 李冬雪. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005, 12(6):32-34.
Zhang J F, Zhang X D, Zhou J X, Liu G H, Li D X. World resources of saline soil and main amelioration measures. Res Soil Water Conser, 2005, 12(6):32-34 (in Chinese with English abstract).
[7] 高继平, 林鸿宣. 水稻耐盐机理研究的重要进展——耐盐数量性状基因SKC1的研究. 生命科学, 2005, 17:563-565.
Gao J P, Lin H X. An important advance in the study of salt-tolerance mechanism in rice—the study of salt-tolerance quantitative trait gene SKC1. Chin Bull Life Sci, 2005, 17:563-565 (in Chinese).
[8] Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37:1141-1146.
doi: 10.1038/ng1643
[9] 彭静静, 张静, 王美娜, 安文静, 王凯婕, 刘亚菲, 岳柯, 韦梓丰, 侯兰兰, 罗琴星, 毕一凡, 梁卫红. 过表达水稻OsAQP增强转基因拟南芥耐盐性. 中国生物化学与分子生物学报, 2019, 35:678-686.
Peng J J, Zhang J, Wang M N, An W J, Wang K J, Liu Y F, Yue K, Wei Z F, Hou L L, Luo Q X, Bi Y F, Liang W H. Overexpression of rice OsAQP enhances salt tolerance in transgenic Arabidopsis. Chin J Biochem Mol Biol, 2019, 35:678-686 (in Chinese with English abstract).
[10] Liao Y D, Lin K H, Chen C C, Chiang C M. Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breed, 2016, 36:22.
doi: 10.1007/s11032-016-0446-2
[11] Amin U S M, Biswas S, Elias S M, Razzaque S, Haque T, Malo R, Seraj Z I. Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5°-UTR in transgenic lines of rice. Front Plant Sci, 2016, 7:14.
doi: 10.3389/fpls.2016.00014 pmid: 26834778
[12] Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol, 2007, 64:49-58.
doi: 10.1007/s11103-007-9133-3
[13] Li M, Guo L J, Guo C M, Wang L J, Chen L. Over-expression of a DUF1644 protein gene,SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol, 2016, 59:62-73.
doi: 10.1007/s12374-016-0180-7
[14] Sahoo R K, Ansari M W, Tuteja R, Tuteja N. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice, 2014, 7:17-19.
doi: 10.1186/s12284-014-0017-2
[15] Nath M, Garg B, Sahoo R K, Tuteja N. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation. Plant Signal Behav, 2015, 10:e992289.
doi: 10.4161/15592324.2014.992289
[16] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111:10013-10018.
doi: 10.1073/pnas.1321568111
[17] Chen X, Wang Y, Lyu B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol, 2014, 55:604-619.
doi: 10.1093/pcp/pct204 pmid: 24399239
[18] Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev, 2009, 23:1805-1817.
doi: 10.1101/gad.1812409
[19] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpression a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103:12987-12992.
doi: 10.1073/pnas.0604882103
[20] Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67:169-181.
doi: 10.1007/s11103-008-9309-5
[21] Battaglia M, Covarrubias A A. Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci, 2013, 25:190.
[22] Magwanga R O, Lu P, Kirungu J N, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F. Characterization of the late embryogenesis abundant (LEA) protein family and their role in drought stress tolerance in upland cotton. BMC Genet, 2018, 19:6.
doi: 10.1186/s12863-017-0596-1 pmid: 29334890
[23] Huang L P, Zhang M Y, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza sativa L. Plant Cell Physiol, 2018, 59:916-929.
doi: 10.1093/pcp/pcy035
[24] Wang H, Wu Y, Yang X, Guo X, Cao X. SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma, 2017, 254:685-696.
doi: 10.1007/s00709-016-0981-z
[25] Nuccio M L, Thomas T L. ATS1 and ATS3: two novel embryo-specific genes in Arabidopsis thaliana. Plant Mol Biol, 1999, 39:1153-1163.
pmid: 10380802
[26] Rooijen G J H V, Wilen R W, Holbrook L A, Abrams S R, Moloney M M. Phytohormones and osmotic stress in the regulation of embryo-specific gene expression in Brassica napus microspore embryos. Plant Growth Regul, 1992, 13:354-359.
[27] Shinde S, Villamor J G, Lin W, Sharma S, Verslues P E. Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol, 2016, 172:1074.
pmid: 27512016
[28] Forlani G, Giberti S, Funck D. D1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulationby proline depend on whether NADPH or NADH acts as cosubstrate. New Phytol, 2014, 202:911-919.
doi: 10.1111/nph.2014.202.issue-3
[29] Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids, 2010, 39:949-962.
doi: 10.1007/s00726-010-0525-3 pmid: 20204435
[30] Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep, 2013, 32:985-1006.
doi: 10.1007/s00299-013-1414-5 pmid: 23508256
[31] Liang X, Zhang L, Natarajan S K, Becker D F. Proline mechanisms of stress survival. Antioxid Redox Sign, 2013, 19:998-1011.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!