Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1300-1311.doi: 10.3724/SP.J.1006.2024.31035

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern

LU Ru-Hua1(), WANG Wen-Xuan2, CAO Qiang1, TIAN Yong-Chao1, ZHU Yan1, CAO Wei-Xing1, LIU Xiao-Jun1,*()   

  1. 1National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, Jiangsu, China
    2College of Humanities & Social Development, Nanjing 210095, Jiangsu, China
  • Received:2023-06-04 Accepted:2023-10-23 Online:2024-05-12 Published:2023-11-30
  • Contact: E-mail: liuxj@njau.edu.cn, Tel: 025-84396804
  • Supported by:
    National Key Research and Development Program of China(2022YFD2301402);Hainan Institute of Nanjing Agricultural University(NAUSY-ZD01);National Natural Science Foundation of China(32071903)

Abstract:

The optimization of agricultural practices such as nitrogen and straw input may be an effective option for maintaining environmental sustainability. However, previous studies on the effects of nitrogen and straw inputs on wheat growth and N2O emission reduction were limited. Therefore, the present study was based on the literature published from 2000 to 2022 about wheat yield and N2O emissions under different nitrogen and straw inputs amendment in the middle and lower reaches of the Yangtze River, a random forest (RF) model of wheat yield and N2O emission was constructed. And the influence of nitrogen and straw inputs on wheat yield and N2O emissions was quantified. Based on the developed model, wheat yield and N2O emission simulations at the experimental site were carried out in combination with scenario settings, and the carbon emission intensity (CEE) and net ecosystem economic benefits (NEEB) were evaluated. The results were as follow: On the regional scale, an RF model was established for the response of wheat yield and N2O emission to the application of nitrogen fertilizer and straw returning. The verification results were R2 of 0.66 and 0.65, and RMSE of 0.70 and 1.11, respectively. Quantifying the importance of independent variables showed that nitrogen application rate and soil organic matter were essential for yield and N2O models. For nitrogen fertilizer and straw management under different targets, the amount of nitrogen fertilizer required to achieve the highest yield was 208-212 kg hm-2, the amount of nitrogen fertilizer required to achieve the minimum CEE was 113-130 kg hm-2, and the amount of nitrogen fertilizer required to achieve the highest NEEB was 202-205 kg hm-2, of which the highest ecological benefit of 13,669.18 CHY could be obtained by applying 202 kg hm-2 nitrogen fertilizer under the straw input of 6.75 t hm-2. Our results indicate that optimizing nitrogen fertilizer and straw inputs has the potential to reduce crop carbon emission intensity and maximize net ecological and environmental benefits.

Key words: nitrogen application rate, straw inputs, wheat, N2O, emission model, fertilizer recommendation

Table 1

Descriptive statistics of field management practices, ecological factors and N2O emission"

指标
Indicator
最小值
Min.
最大值
Max.
平均值
Mean
标准偏差
SD
标准差系数
CV (%)
N rate 0 300 181.89 82.29 45.24
Split N 1 3 2.63 0.50 19.19
Straw rate 0 8.25 1.45 2.40 164.83
pH 5.88 8.09 6.79 0.64 9.43
SOM (g kg-1) 11.00 57.90 20.42 7.78 38.10
TN (g kg-1) 0.51 2.90 1.53 0.46 30.06
LT_Temp (℃) 15.10 19.95 15.96 0.46 2.89
LT_Prec (mm) 750.00 1890.30 1117.32 174.31 15.60
Cum_N2O (kg hm-2) 0.13 7.74 2.42 1.98 81.82

Fig. 1

Pearson correlation heatmap of field management practices, ecological factors and N2O emission Abbreviations are the same as these given in Table 1."

Fig. 2

Calibrations and validations of N2O emission and wheat yield RF models"

Fig. 3

Independent importance of each RF model a, N2O; b, yield. Abbreviations are the same as those given in Table 1."

Table 2

Simulation model of cumulative N2O emission and wheat yield under different scenarios of straw returning to the field"

处理
Treatment
N2O累积排放量Cumulative N2O emissions (kg hm-2) 产量
Yield (t hm-2)
LINEAR EXPONENT
S0 y = 0.0077x+1.0226 y = 1.1281e0.004x y = -0.1111x2+47.077x+1506.0
S2.25 y = 0.0078x+1.1241 y = 1.2180e0.0038x y = -0.1117x2+46.961x+1526.2
S4.50 y = 0.0071x+1.2914 y = 1.3763e0.0033x y = -0.1197x2+49.842x+1489.9
S6.75 y = 0.0069x+1.2907 y = 1.3727e0.0033x y = -0.1205x2+50.221x+1491.4

Fig. 4

Response of CEE and NEEB to different N and straw application Treatments are the same as those given in Table 2."

Table 3

Nitrogen and straw inputs of wheat under different targets and their net ecological and environmental benefits"

模型
Model
秸秆量
Straw rate (t hm-2)
施氮量
N rate (kg hm-2)
收益
Benefit (CHY)
Yield-max 0 212 12,816.00
2.25 210 12,851.00
4.50 208 13,453.00
6.75 208 13,657.88
CEE-LINEAR 0 113 10,702.22
2.25 116 10,934.81
4.50 129 12,029.94
6.75 130 12,255.24
CEE-EXPONENT 0 114 10,750.49
2.25 117 10,981.24
4.50 127 11,951.29
6.75 127 12,135.69
NEEB-LINEAR 0 205 12,829.70
2.25 203 12,863.29
4.50 201 13,464.20
6.75 202 13,669.00
NEEB-EXPONENT 0 205 12,830.40
2.25 203 12,864.52
4.50 201 13,464.99
6.75 202 13,669.18
[1] Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. Achieving yield gains in wheat. Plant Cell Environ, 2012, 35: 1799-1823.
doi: 10.1111/pce.2012.35.issue-10
[2] Van Dijk M, Morley T, Rau M L, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat Food, 2021, 2: 494.
doi: 10.1038/s43016-021-00322-9 pmid: 37117684
[3] Smith K A. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Eur J Soil Sci, 2017, 68: 137-155.
doi: 10.1111/ejss.2017.68.issue-2
[4] Cowan N, Levy P, Maire J, Coyle M, Leeson S R, Famulari D, Carozzi M, Nemitz E, Skiba U. An evaluation of four years of nitrous oxide fluxes after application of ammonium nitrate and urea fertilisers measured using the eddy covariance method. Agric For Meteor, 2020, 280: 107812.
doi: 10.1016/j.agrformet.2019.107812
[5] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: a review. Pedosphere, 2016, 26: 137-147.
doi: 10.1016/S1002-0160(15)60030-3
[6] Millar N, Urrea A, Kahmark K, Shcherbak I, Robertson G P, Ortiz-Monasterio I. Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agric Ecosyst Environ, 2018, 261: 125-132.
doi: 10.1016/j.agee.2018.04.003
[7] Song X T, Liu M, Ju X T, Gao B, Su F, Chen X P, Rees R M. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ Sci Technol, 2018, 52: 12504-12513.
doi: 10.1021/acs.est.8b03931
[8] Duan J Z, Shao Y H, He L, Li X, Hou G G, Li S N, Feng W, Zhu Y J, Wang Y H, Xie Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 12.
[9] Lyu J L, Yin X H, Dorich C, Olave R, Wang X H, Kou C L, Song X. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: a 3-year field measurement from long-term fertilizer experiments. Soil Tillage Res, 2021, 212: 105053.
doi: 10.1016/j.still.2021.105053
[10] Chen H H, Li X C, Hu F, Shi W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob Chang Biol, 2013, 19: 2956-2964.
doi: 10.1111/gcb.2013.19.issue-10
[11] Wang J, Zhu B, Zhang J B, Muller C, Cai Z C. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol Biochem, 2015, 91: 222-231.
doi: 10.1016/j.soilbio.2015.08.039
[12] Huang T, Gao B, Christie P, Ju X. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 2013, 10: 7897-7911.
doi: 10.5194/bg-10-7897-2013
[13] Ambus P, Jensen E S, Robertson G P. Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement. Phyton-Ann Rei Bot, 2001, 41: 7-15.
[14] Yang L, Muhammad I, Chi Y X, Wang D, Zhou X B. Straw return and nitrogen fertilization to maize regulate soil properties, microbial community, and enzyme activities under a dual cropping system. Front Microbiol, 2022, 13: 823963.
doi: 10.3389/fmicb.2022.823963
[15] Huang T, Yang H, Huang C C, Ju X T. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Res, 2017, 204: 1-11.
doi: 10.1016/j.fcr.2017.01.004
[16] Akhtar K, Wang W Y, Ren G X, Khan A, Enguang N, Khan A, Feng Y Z, Yang G H, Wang H Y. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci Total Environ, 2020, 741: 140488.
doi: 10.1016/j.scitotenv.2020.140488
[17] Glenn A J, Moulin A P, Roy A K, Wilson H F. Soil nitrous oxide emissions from no-till canola production under variable rate nitrogen fertilizer management. Geoderma, 2021, 385: 114857.
doi: 10.1016/j.geoderma.2020.114857
[18] Cao J, Zhang Z, Tao F, Zhang L, Luo Y, Zhang J, Han J, Xie J. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric For Meteorol, 2021, 297: 108275.
doi: 10.1016/j.agrformet.2020.108275
[19] Wen G, Ma B L, Vanasse A, Caldwell C D, Smith D L. Optimizing machine learning-based site-specific nitrogen application recommendations for canola production. Field Crops Res, 2022, 288: 108707.
doi: 10.1016/j.fcr.2022.108707
[20] Chen S, Huang Y, Zou J. Relationship between nitrous oxide emission and winter wheat production. Biol Fert Soils, 2008, 44: 985-989.
doi: 10.1007/s00374-008-0284-4
[21] Gao X, Lan T, Deng L, Zeng M. Mushroom residue application affects CH4 and N2O emissions from fields under rice-wheat rotation. Arch Agron Soil Sci, 2017, 63: 748-760.
doi: 10.1080/03650340.2016.1235784
[22] Guo L, Zhang L, Liu L, Sheng F, Cao C, Li C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric Ecosyst Environ, 2021, 322: 107650.
doi: 10.1016/j.agee.2021.107650
[23] Guo T, Luan H, Song D, Zhang S, Zhou W, Liang G. Combined fertilization could increase crop productivity and reduce greenhouse gas intensity through carbon sequestration under rice-wheat rotation. Agronomy (Basel), 2021, 11: 103390.
[24] He H, Li D, Pan F, Wang F, Wu D, Yang S. Effects of nitrogen reduction and optimized fertilization combined with straw return on greenhouse gas emissions and crop yields of a rice-wheat rotation system. Int J Plant Prod, 2022, 16: 669-679.
doi: 10.1007/s42106-022-00212-5
[25] He H, Zhang T, Yao Y, Yang W, Busayo D, Wen X, Chen X, Yang X, Yang S, Ma Y. Tillage methods on greenhouse gas emissions and yields of rice-wheat rotation system in east China polder area. Int J Plant Prod, 2021, 15: 485-498.
doi: 10.1007/s42106-021-00152-6
[26] Hu N, Wang B, Gu Z, Tao B, Zhang Z, Hu S, Zhu L, Meng Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agric Ecosyst Environ, 2016, 223: 115-122.
doi: 10.1016/j.agee.2016.02.027
[27] Ji Y, Liu G, Ma J, Xu H, Yagi K. Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutr Cycl Agroecosyst, 2012, 94: 111-122.
doi: 10.1007/s10705-012-9532-y
[28] Li S H, Guo L J, Cao C G, Li C F. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ Sci Pollut Res, 2021, 28: 5742-5754.
doi: 10.1007/s11356-020-10914-w
[29] Liu G, Ma J, Yang Y, Yu H, Zhang G, Xu H. Effects of straw incorporation methods on nitrous oxide and methane emissions from a wheat-rice rotation system. Pedosphere, 2019, 29: 204-215.
doi: 10.1016/S1002-0160(17)60410-7
[30] Liu S, Qin Y, Zou J, Liu Q. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China. Sci Total Environ, 2010, 408: 906-913.
doi: 10.1016/j.scitotenv.2009.11.002
[31] Ma E, Zhang G, Ma J, Xu H, Cai Z, Yagi K. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr Cycl Agroecosyst, 2010, 88: 463-469.
doi: 10.1007/s10705-010-9369-1
[32] Ma Y C, Kong X W, Yang B, Zhang X L, Yan X Y, Yang J C, Xiong Z Q. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agric Ecosyst Environ, 2013, 164: 209-219.
doi: 10.1016/j.agee.2012.11.003
[33] Wang H, Shen M, Hui D, Chen J, Sun G, Wang X, Lu C, Sheng J, Chen L, Luo Y, Zheng J, Zhang Y. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Soil Tillage Res, 2019, 195: 104377.
doi: 10.1016/j.still.2019.104377
[34] Xia L, Wang S, Yan X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric Ecosyst Environ, 2014, 197: 118-127.
doi: 10.1016/j.agee.2014.08.001
[35] Xiang J, Liu D, Ding W, Yuan J, Lin Y. Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season. J Clean Prod, 2015, 104: 52-58.
doi: 10.1016/j.jclepro.2014.12.038
[36] Yang B, Xiong Z, Wang J, Xu X, Huang Q, Shen Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: a 3-year field experiment. Ecol Eng, 2015, 81: 289-297.
doi: 10.1016/j.ecoleng.2015.04.071
[37] Yao Z, Zheng X, Wang R, Xie B, Butterbach-Bahl K, Zhu J. Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos Environ, 2013, 79: 641-649.
doi: 10.1016/j.atmosenv.2013.07.006
[38] Yao Z, Zheng X, Xie B, Mei B, Wang R, Butterbach-Bahl K, Zhu J, Yin R. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biol Biochem, 2009, 41: 2131-2140.
doi: 10.1016/j.soilbio.2009.07.025
[39] Zhang L, Zheng J, Chen L, Shen M, Zhang X, Zhang M, Bian X, Zhang J, Zhang W. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system. Eur J Agron, 2015, 63: 47-54.
doi: 10.1016/j.eja.2014.11.005
[40] Zou J, Huang Y, Lu Y, Zheng X, Wang Y. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmos Environ, 2005, 39: 4755-4765.
doi: 10.1016/j.atmosenv.2005.04.028
[41] 江波, 杨书运, 马友华, 贺非, 左怀峰, 范东福, 杨小兵. 耕作方式对圩区冬小麦温室气体排放通量的影响. 安徽农业大学学报, 2014, 41: 241-247.
Jiang B, Yang S Y, Ma Y H, He F, Zuo H F, Fan D F, Yang X B, Effects on emission of greenhouse gas by different tillage treatments to winter wheat in polder areas. J Anhui Agric Univ, 2014, 41: 241-247 (in Chinese with English abstract).
[42] 靳红梅, 沈明星, 王海候, 陆长婴, 常志州, 郭瑞华. 秸秆还田模式对稻麦两熟农田麦季CH4和N2O排放特征的影响. 江苏农业学报, 2017, 33: 333-339.
Jin H M, Shen M X, Wang H H, Lu C Y, Chang Z Z, Guo R H. Influence of straw returning patterns on CH4and N2O emission during wheat-growing season in a rice-wheat double cropping system. Jiangsu J Agric Sci, 2017, 33: 333-339 (in Chinese with English abstract).
[43] 牛东, 潘慧, 丛美娟, 尹萍, 吴浩, 孙娟, 朱新开, 郭文善. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响. 麦类作物学报, 2016, 36: 1667-1673.
Niu D, Pan H, Cong M J, Yin P, Wu H, Sun J, Zhu X K, Guo W S. Effect of nitrogen application ratio and straw returning on soil greenhouse gas emission during wheat growing period. J Triticeae Crops, 2016, 36: 1667-1673 (in Chinese with English abstract).
[44] 孙国峰, 郑建初, 陈留根, 何加骏, 张岳芳. 配施猪粪对麦季CH4和N2O排放及温室效应的影响. 生态与农村环境学报, 2012, 28: 349-354.
Sun G F, Zheng J C, Chen L G, He J J, Zhang Y F. Effects of application of pig manure in combination with chemical fertilizers on CH4 and N2O emissions and their greenhouse effects in wheat field. J Ecol Rural Environ, 2012, 28: 349-354 (in Chinese with English abstract).
[45] 孙国峰, 郑建初, 陈留根, 何加骏, 张岳芳. 沼液替代化肥对麦季CH4、N2O排放及温室效应的影响. 农业环境科学学报, 2012, 31: 1654-1661.
Sun G F, Zheng J C, Chen L G, He J J, Zhang Y F. Effects of chemical fertilizers substitution by biogas slurry on CH4 and N2O emissions and their greenhouse effects in wheat field. J Agro-Environ Sci, 2012, 31: 1654-1661 (in Chinese with English abstract).
[46] 王海云, 邢光熹. 不同施氮水平对稻麦轮作农田氧化亚氮排放的影响. 农业环境科学学报, 2009, 28: 2631-2646.
Wang H Y, Xing G X. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation. J Agro-Environ Sci, 2009, 28: 2631-2636 (in Chinese with English abstract).
[47] 张翰林, 吕卫光, 郑宪清, 李双喜, 王金庆, 张娟琴, 何七勇, 袁大伟, 顾晓君. 不同秸秆还田年限对稻麦轮作系统温室气体排放的影响. 中国生态农业学报, 2015, 23: 302-308.
Zhang H L, Lyu W G, Zheng X Q, Li S X, Wang J Q, Zhang J Q, He Q Y, Yuan D W, Gu X J. Effects of years of straw return to soil on greenhouse gas emission in rice/wheat rotation systems. Chin J Eco-Agric, 2015, 23: 302-308 (in Chinese with English abstract).
[48] 张岳芳, 陈留根, 朱普平, 张传胜, 盛婧, 王子臣, 郑建初. 秸秆还田对稻麦两熟高产农田净增温潜势影响的初步研究. 农业环境科学学报, 2012, 31: 1647-1653.
Zhang Y F, Chen L G, Zhu P P, Zhang C S, Sheng J, Wang Z C, Zheng J C. Preliminary study on effect of straw incorporation on net global warming potential in high production rice-wheat double cropping systems. J Agro-Environ Sci, 2012, 31: 1647-1653 (in Chinese with English abstract).
[49] 邹建文. 稻麦轮作生态系统温室气体(CO2、CH4和N2O)排放研究. 南京农业大学博士学位论文, 江苏南京, 2005.
Zou J W. A Study on Greenhouse Gases (CO2, CH4 and N2O) Emission from Rice-winter Wheat Rotations in Southeast China. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2005 (in Chinese with English abstract).
[50] Zhang Z S, Guo L J, Liu T Q, Li C F, Cao C G. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice wheat cropping systems in central China. Atmosph Environ, 2015, 122: 636-644.
doi: 10.1016/j.atmosenv.2015.09.065
[51] Li S H, Guo L J, Cao C G, Li C F. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ Sci Pollut Res, 2021, 28: 5742-5754.
doi: 10.1007/s11356-020-10914-w
[52] Xia L L, Xia Y Q, Li B L, Wang J Y, Wang S W, Zhou W, Yan X Y. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric Ecosyst Environ, 2016, 231: 24-33.
doi: 10.1016/j.agee.2016.06.020
[53] Li B, Fan C H, Zhang H, Chen Z Z, Sun L Y, Xiong Z Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmosph Environ, 2015, 100: 10-19.
doi: 10.1016/j.atmosenv.2014.10.034
[54] Lu R, Zhang P, Fu Z, Jiang J, Wu J, Cao Q, Tian Y, Zhu Y, Cao W, Liu X. Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland. Sci Total Environ, 2023, 871: 161967.
doi: 10.1016/j.scitotenv.2023.161967
[55] Guo C, Liu X, He X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci Total Environ, 2022, 831: 154982.
doi: 10.1016/j.scitotenv.2022.154982
[56] Muhammad I, Wang J, Sainju U M, Zhang S H, Zhao F Z, Khan A. Cover cropping enhances soil microbial biomass and affects microbial community structure: a meta-analysis. Geoderma, 2021, 381: 114696.
doi: 10.1016/j.geoderma.2020.114696
[57] Zhang Y Y, Liu J F, Mu Y J, Pei S W, Lun X X, Chai F H. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmosph Environ, 2011, 45: 2956-2961.
doi: 10.1016/j.atmosenv.2010.10.052
[58] Liu C Y, Wang K, Meng S X, Zheng X H, Zhou Z X, Han S H, Chen D L, Yang Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agric Ecosyst Environ, 2011, 140: 226-233.
doi: 10.1016/j.agee.2010.12.009
[59] Yao Z S, Zheng X H, Xie B H, Mei B L, Wang R, Butterbach-Bahl K, Zhu J G, Yin R. Tillage and crop residue management significantly affects N-trace gas emissions during the non- rice season of a subtropical rice-wheat rotation. Soil Biol Biochem, 2009, 41: 2131-2140.
doi: 10.1016/j.soilbio.2009.07.025
[60] Garcia-Ruiz R, Gomez-Munoz B, Hatch D J, Bol R, Baggs E M. Soil mineral N retention and N2O emissions following combined application of 15N-labelled fertiliser and weed residues. Rapid Commun Mass Spectr, 2012, 26: 2379-2385.
doi: 10.1002/rcm.v26.20
[61] Wang Y Y, Hu Z H, Shang D Y, Xue Y, Islam A, Chen S T. Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat- soybean rotation cropland. Environ Pollut, 2020, 257: 113556.
doi: 10.1016/j.envpol.2019.113556
[62] Bhattacharyya P, Nayak A K, Mohanty S, Tripathi R, Shahid M, Kumar A, Raja R, Panda B B, Roy K S, Neogi S, Dash P K, Shukla A K, Rao K S. Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res, 2013, 129: 93-105.
doi: 10.1016/j.still.2013.01.014
[63] Li Z, Zeng Z, Song Z, Tian D, Huang X, Nie S, Wang J, Jiang L, Luo Y, Cui J, Niu S. Variance and main drivers of field nitrous oxide emissions: a global synthesis. J Clean Prod, 2022, 353: 131686.
doi: 10.1016/j.jclepro.2022.131686
[64] Jiang Z W, Yang S H, Chen X, Pang Q Q, Xu Y, Qi S T, Yu W Q, Dai H D. Controlled release urea improves rice production and reduces environmental pollution: a research based on meta-analysis and machine learning. Environ Sci Pollut Res, 2022, 29: 3587-3599.
doi: 10.1007/s11356-021-15956-2
[65] Villa-Vialaneix N, Follador M, Ratto M, Leip A. A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environl Mod Software, 2012, 34: 51-66.
[66] Qiu H H, Wei W L. Crop straw retention influenced crop yield and greenhouse gas emissions under various external conditions. Environ Sci Pollut Res, 2021, 28: 42362-42371.
doi: 10.1007/s11356-021-13698-9
[67] Rasouli S, Whalen J K, Madramootoo C A. Review: reducing residual soil nitrogen losses from agroecosystems for surface water protection in Quebec and Ontario, Canada: best management practices, policies and perspectives. Can J Soil Sci, 2014, 94: 109-127.
doi: 10.4141/cjss2013-015
[68] Qin Z, Myers D B, Ransom C J, Kitchen N R, Liang S Z, Camberato J J, Carter P R, Ferguson R B, Fernandez F G, Franzen D W, Laboski C A M, Malone B D, Nafziger E D, Sawyer J E, Shanahan J F. Application of machine learning methodologies for predicting corn economic optimal nitrogen rate. Agron J, 2018, 110: 2596-2607.
doi: 10.2134/agronj2018.03.0222
[69] 刘新伟, 龚德平, 巩细民, 王巍, 娄希凤, 韩玲君, 杨德桦, 赵竹青. 湖北江北农场小麦肥效试验与施肥推荐. 麦类作物学报, 2012, 32: 338-343.
Liu X W, Gong D P, Gong X M, Wang W, Lou X F, Han L J, Yang D H, Zhao Z Q. Fertilizer effect on wheat and recommendation offertilizer for wheat production in Jiangbei farm. J Triticeae Crops, 2012, 32: 338-343 (in Chinese with English abstract).
[70] 周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49: 3100-3109.
doi: 10.3724/SP.J.1006.2023.21070
Zhou Q, Li L T, Zhang L L, Miao Y H, Wang Y L. Effects of interaction of nitrogen level and sowing rate on yield, growth, and ecological field characteristics of winter wheat. Acta Agron Sin, 2023, 49: 3100-3109 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21070
[1] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[2] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[3] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[4] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[5] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[6] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[7] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[8] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[9] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[10] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[11] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[12] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[13] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[14] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[15] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!