Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1080-1090.doi: 10.3724/SP.J.1006.2024.31053

• RESEARCH NOTES • Previous Articles    

Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes

QI Xue-Li1(), LI Ying2(), LI Chun-Ying3, HAN Liu-Peng1, ZHAO Ming-Zhong1, ZHANG Jian-Zhou3,*()   

  1. 1Crops Molecular Breeding Academy of Henan, Zhengzhou 450002, Henan, China
    2Editorial Department of Journal of Henan Agricultural University, Zhengzhou 450002, Henan, China
    3Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2023-09-17 Accepted:2024-01-12 Online:2024-04-12 Published:2024-02-23
  • Contact: * E-mail: zhangjianzhou00@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA (Wheat, CARS-3-7);Independent Innovation Project of HAAS(2022ZC03)

Abstract:

In order to explore the mechanism of exogenous salicylic acid in improving the resistance of wheat stripe rust, using, the untreated wheat seedlings (control), stripe rust wheat seedlings (SR), and salicylic acid treated stripe rust wheat seedlings (SA-SR) as the experimental materials were investigated using Zhoumai 18. After 15 days of treatment, the wheat seedlings were identified for disease resistance, amino acid detection, transcriptome sequencing, and fluorescence quantification. The results indicated that the exogenous salicylic acid could significantly reduce the pathogenicity of stripe rust in wheat seedlings. The content of amino acids in leaves in the SR group was generally reduced, while there was no significant difference between the SA-SR group and the control group pretreated with salicylic acid, indicating that the content of amino acids in leaves was significantly reduced due to wheat stripe rust. GO enrichment indicated that the differentially expressed genes of SR and SA-SR groups were enriched in biological processes related to photosynthesis involving cell components such as chloroplasts and thylakoids. KEGG pathway enrichment showed that both SR and SA-SR subgroups were significantly enriched in the MAPK signaling pathway and the biosynthesis of secondary metabolites played an important role in plant disease resistance or stress resistance.

Key words: wheat stripe rust, salicylic acid, amino acid, transcriptom

Fig. 1

Grading standard of wheat stripe rust at seedling stage (grades 0-9)"

Table 1

Primers for real-time quantitative PCR"

基因名称
Gene ID
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
TraesCS2D02G433300 CGCCGTGCGTGAGTAATTC CGTCGGGTTCGACACTCTTA
TraesCS2D02G014800 CGACCTCAACTCCAACTCCATA ACGGATTCCCCTCTCCGAA
TraesCS6B02G078400 TGGGAGCAATACTTCGCCTG ATAGCCCATCACCCCCGTAT
TraesCS1B02G038100 AGTTAGACCAAATGGCCCCTC CCCCCTGAGGTATAGACCGA
TraesCS5D02G099000 AAGCCTTTGCTGTCCTACGG AATGGGCCTGTAATCGGTGG
TraesCS2A02G378900 CCAGTCGGAGCACGTTATCA GATGGTGCCGTAGATCCGTT
TraesCS2D02G375200 TCCATTGTAGGCTTGCTGGA CCGGGTGATAACCCACAAGTA
TraesCS5D02G531600 CAGCCCTTTATAGGCCCACG TAGGCCGAAAGCTAACACGG
TraesCS1D02G290100 CGACGCCTATAGCAAACGGA GCCTGAAGCCAACGAAACTC
TraesCS1B02G011100 CGTATGCGCTATTCGTTGGC GGCGAGGATTCAGGAACTGT

Fig. 2

Response types of SR and SA-SR to CYR32 at seedling stage"

Table 2

Hydrolyzed amino acid content of wheat leaves in three groups"

氨基酸
Amino acid
对照Control SR SA-SR
C_1 C_2 C_3 SR_1 SR_2 SR_3 SA-SR_1 SA-SR_2 SA-SR_3
天冬氨酸Asp 3.302 3.421 3.411 2.659 2.723 2.502 3.761 3.613 3.559
谷氨酸Glu 6.076 5.078 5.295 5.492 5.333 5.880 5.878 5.295 6.492
丝氨酸Ser 1.213 1.473 1.354 1.022 0.988 0.813 1.073 1.054 1.122
组氨酸His* 0.574 0.525 0.578 0.571 0.501 0.402 0.525 0.578 0.671
甘氨酸Gly 1.500 1.621 1.548 1.447 1.413 1.500 1.521 1.548 1.747
苏氨酸Thr* 0.664 0.617 0.649 0.512 0.551 0.643 0.617 0.649 0.670
精氨酸Arg 3.233 3.701 3.623 2.612 2.813 2.233 2.791 2.820 3.609
丙氨酸Ala 1.063 1.111 1.262 1.200 0.961 1.063 1.011 0.962 1.212
酪氨酸Tyr 0.771 0.752 0.729 0.831 0.689 0.771 0.652 0.679 0.831
胱氨酸Cys-s 0.115 0.112 0.099 0.029 0.016 0.109 0.120 0.199 0.129
缬氨酸Val* 1.153 1.011 1.121 1.119 1.115 1.153 1.011 1.121 1.319
甲硫氨酸Met* 0.169 0.155 0.177 0.128 0.134 0.129 0.155 0.157 0.188
苯丙氨酸Phe* 1.378 1.216 1.313 1.209 1.008 1.018 1.216 1.113 1.209
异亮氨酸Ile* 0.984 0.851 0.894 0.727 0.696 0.683 0.851 0.894 0.827
亮氨酸Leu* 1.645 1.555 1.599 1.360 1.402 1.345 1.519 1.581 1.580
赖氨酸Lys* 0.803 0.792 0.832 0.860 0.803 0.703 0.850 0.842 1.060
脯氨酸Pro 0.912 0.902 0.927 0.878 0.820 0.790 0.960 0.938 1.268
总量 Total 24.118 24.626 24.113 21.772 19.713 20.346 24.236 22.765 26.349

Fig. 3

Comparison of 17 hydrolyzed amino acids in wheat leaves in the three groups"

Table 3

Statistics of all the samples of sequencing data"

样品
SA sample
原始序列数
Raw reads
过滤后序列数
Clean reads
碱基错误率
Error rate (%)
GC含量
GC content (%)
比对率
Total mapped
C_1 96129064 95045666 0.02 55.57 92039992 (96.84%)
C_2 89832494 88505872 0.02 55.44 85551890 (96.66%)
C_3 79838786 78959024 0.02 55.61 76422986 (96.79%)
SR_1 97621350 96607070 0.02 55.67 93194776 (96.47%)
SR_2 96303100 95196330 0.02 55.72 91799894 (96.43%)
SR_3 95914068 94943432 0.02 55.72 91563514 (96.44%)
SA-SR_1 101359676 100284658 0.02 54.67 96353104 (96.08%)
SA-SR_2 109261866 108220880 0.02 54.75 104057256 (96.15%)
SA-SR_3 93098314 92227658 0.02 54.71 88651196 (96.12%)

Fig. 4

Correlation analysis of transcriptome sequencing data between different samples a: Pearson correlation analysis within and between groups; b: PCA analysis of gene expression levels between groups."

Fig. 5

Volcano plot of differentially expressed genes"

Fig. 6

Analysis of differentially expressed genes in different combinations a: clustering of genes that share differences. b: Venn diagram showed the number of DEGs between SA-SR vs SR and SR vs Control."

Table 4

Top 10 significantly enriched GO term in SA-SR vs SR"

GO条目
GO_accession
注释描述
Description
P
P-value
上调
Up
下调
Down
类别
Term_type
GO:0009536 质体Plastid 2.28E-95 44 681 细胞组分Cell component
GO:0009507 叶绿体Chloroplast 2.03E-91 40 663 细胞组分Cell component
GO:0009579 类囊体Thylakoid 3.11E-61 34 362 细胞组分Cell component
GO:0042651 类囊体膜Thylakoid membrane 5.71E-56 14 222 细胞组分Cell component
GO:0015979 光合作用Photosynthesis 3.09E-51 34 263 生物过程Cell component
GO:0034357 光合作用膜Photosynthetic membrane 2.99E-49 31 265 细胞组分Cell component
GO:0009534 叶绿体类囊体Chloroplast thylakoid 3.60E-47 8 200 细胞组分Cell component
GO:0031976 质体类囊体Plastid thylakoid 3.60E-47 8 200 细胞组分Cell component
GO:0009532 质体基质Plastid stroma 1.56E-42 6 215 细胞组分Cell component
GO:0009535 叶绿体类囊体膜Chloroplast thylakoid membrane 2.67E-42 8 172 细胞组分Cell component

Table 5

Top 10 significantly enriched GO term in SA-SR vs Control"

GO条目
GO_accession
注释描述
Description
P
P-value
上调
Up
下调
Down
类别
Type
GO:0009800 肉桂酸生物合成过程
Cinnamic acid biosynthetic process
1.19E-70 35 0 生物过程
Cell bioprocess
GO:0009803 肉桂酸代谢过程
Cinnamic acid metabolic process
1.19E-70 35 0 生物过程
Cell bioprocess
GO:0045548 苯丙氨酸解氨酶活性
Phenylalanine ammonia-lyase activity
1.19E-70 35 0 分子功能
Molecular function
GO:0016301 激酶活性
Kinase activity
1.19E-66 1260 263 分子功能
Molecular function
GO:0006468 蛋白质磷酸化
Protein phosphorylation
9.25E-66 1163 226 生物过程
Molecular function
GO:0004672 蛋白激酶活性
Protein kinase activity
1.48E-65 1163 230 分子功能
Molecular function
GO:0016773 磷酸转移酶活性, 醇基作为受体 4.14E-65 1230 247 分子功能
Molecular function
GO:0016310 磷酸化
Phosphotransferase activity, alcohol group as acceptor
1.76E-58 1208 249 生物过程
Cell bioprocess
GO:0006796 含磷酸盐化合物代谢过程
Phosphate-containing compound metabolic process
9.77E-56 1399 361 生物过程
Cell bioprocess
GO:0006793 磷代谢过程
Phosphorus metabolic process
2.37E-55 1401 361 生物过程
Cell bioprocess

Fig. 7

GO enrichment analysis of differentially expressed genes in different combinations a: SA-SR vs SR; b: SR vs Control."

Fig. 8

Two KEGG pathways comparing combining differential genes a: KEGG pathway enrichment analysis of differentially expressed genes in SA-SR vs SR. b: KEGG pathway enrichment analysis of differentially expressed genes in SR vs Control."

Fig. 9

Spearman correlation analysis of RNA seq and qRT- PCR"

[1] Wan A, Zhao Z, Chen X, He Z H, Li G B. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896-904.
doi: 10.1094/PDIS.2004.88.8.896
[2] 万安民, 赵中华, 吴立人. 2002年我国小麦条锈病发生回顾. 植物保护, 2003, 2: 5-8.
Wan A M, Zhao Z H, Wu L R. Reviews of occurrence of wheat stripe rust disease in 2002 in China. Plant Prot, 2003, 2: 5-8. (in Chinese with English abstract)
[3] Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci, 2014, 5: 4.
doi: 10.3389/fpls.2014.00004 pmid: 24478784
[4] Saleem M, Fariduddin Q, Janda T. Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul, 2021, 40: 464-485.
doi: 10.1007/s00344-020-10152-x
[5] Khalvandi M, Siosemardeh A, Roohi E, Keramati S. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 2021, 7: e05908.
doi: 10.1016/j.heliyon.2021.e05908
[6] Jayakannan M, Bose J, Babourina O, Zed R, Sergey S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul, 2015, 76: 25-40.
doi: 10.1007/s10725-015-0028-z
[7] White R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 1979, 99: 410-412.
pmid: 18631626
[8] 范淑琴, 陈曦, 施永军, 陈宸, 黄奔立, 陈夕军. 水杨酸诱导黄瓜生长及对白粉病的防效. 中国瓜菜, 2020, 33(12): 77-81.
Fan S Q, Chen X, Shi Y J, Chen C, Huang B L, Chen X J. Effect of salicylic acid on growth promotion of cucumber and control of powdery mildew. China Cucurbits Veget, 2020, 33(12): 77-81. (in Chinese)
[9] 牛皓, 姜玉梅, 牛吉山. 小麦抗赤霉病遗传育种研究进展. 农业生物技术学报, 2020, 28: 530-542.
Niu H, Jiang Y M, Niu J S. Research advances in the genetics and breeding of wheat (Triticum aestivum) resistance to Fusarium Head Blight. J Agric Biotechnol, 2020, 28: 530-542. (in Chinese with English abstract)
[10] Sakhabutdinova A R, Fatkhutdinova D R, Bezrukova M V. Salicylic acid alleviates leaf rust-inducible oxidative processes in wheat plants. Oxidat Commun, 2008, 31: 895-903.
[11] 刘芃. 小麦水杨酸信号通路介导的抗条锈病机理研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Liu F. Preliminary Studies on the Mechanism of Salicylic Acid Signaling Pathway in Wheat Resistance Against Stripe Rust Fungus. MS Thesis of Northwest Agriculture & Forestry University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[12] Liu N, Xu Y, Li Q, Cao Y, Yang D, Liu S, Wang X, Mi Y, Liu Y, Ding C, Liu Y, Li Y, Yuan YW, Gao G, Chen J, Qian W, Zhang X. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe, 2022, 30: 1124-1138.
doi: 10.1016/j.chom.2022.07.001
[13] Liu J, Wu X, Fang Y, Liu Y, Bello E O, Li Y, Xiong R, Li Y, Fu Z Q, Wang A, Cheng X. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nat Commun, 2023, 14: 3580.
doi: 10.1038/s41467-023-39254-2 pmid: 37328517
[14] Brunet J, Mundt C C. Disease, frequency-dependent selection, and genetic polymorphisms: experiments with stripe rust and wheat. Evolution, 2000, 54: 406-415.
pmid: 10937217
[15] Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948, 26: 496-500.
[16] 中华人民共和国食品安全国家标准. GB 5009.124-2016食品安全国家标准——食品中氨基酸的测定. 2016.
National Food Safety Standards of China. GB 5009.124-2016 Determination of Amino Acids in Food of National Food Safety Standard. 2016 (in Chinese).
[17] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[18] Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T. STAR ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635
[19] Givanna H P, Simon A, Paul T P, John E P, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics, 2022, 38: 2943-2945.
doi: 10.1093/bioinformatics/btac166 pmid: 35561197
[20] 孙嘉曼, 傅俊范, 王燕平, 周如军, 严雪瑞. 外源水杨酸诱导人参抗锈腐病的生理机制. 沈阳农业大学学报, 2011, 42: 555-558.
Sun J M, Fu J F, Wang Y P, Zhou R J, Yan X R. Physiological mechanism of ginseng resistant to ginseng rusty root rot induced by exogenous salicylic acid. J Shenyang Agric Univ, 2011, 42: 555-558. (in Chinese with English abstract)
[21] Rabbinge R, Hoy M A. A Population model for two-spotted spider mite Tetranychus urticae and its predator metaseiulus occidentalis. Entomol Exp Appl, 1980, 28: 64-81.
doi: 10.1111/eea.1980.28.issue-1
[22] Pan X, Ma J, Su X, Cao P, Chang W R, Liu Z F, Zhang X Z, Li M. Structure of the maize photosystem I supercomplex with light- harvesting complexes I and II. Science, 2018, 360: 1109-1113.
doi: 10.1126/science.aat1156
[23] Ullah C, Tsai C J, Unsicker S B, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol, 2019, 221: 960-975.
doi: 10.1111/nph.2019.221.issue-2
[24] Gao Z M, Wang X C, Peng Z H, Zheng B, Liu Q. Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Rep, 2012, 31: 1345-1356.
doi: 10.1007/s00299-012-1253-9 pmid: 22555402
[25] Mandal S, Mallick N, Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem, 2009, 47: 642-649.
doi: 10.1016/j.plaphy.2009.03.001
[26] 江厚龙, 李鹏, 李钠钾, 催伟伟, 张艳, 耿丽娜, 丁伟. 外源诱抗剂对烟草青枯病的诱抗效果研究. 中国农学通报, 2014, 30: 286-290.
doi: 10.11924/j.issn.1000-6850.2014-0736
Jiang H L, Li P, Li N J, Cui W W, Zhang Y, Geng L N, Ding W. Inhibition effects of induced resistance on tobacco resistance to Ralstonia solanacearum. Chin Agric Sci Bull, 2014, 30: 286-290. (in Chinese with English abstract)
[27] Zhang M, Su J, Zhang Y, Xu J, Zhang S Q. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[28] Yin Z, Zhu W, Zhang X, Chen X, Ye W. Molecular characterization, expression and interaction of MAPK, MAPKK and MAPKKK genes in upland cotton. Genomics, 2021, 113: 1071-1086.
doi: 10.1016/j.ygeno.2020.11.004 pmid: 33181247
[29] Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[30] Wang B, Song N, Zhang Q, Wang N, Kang Z S. TaMAPK4 acts as a positive regulator in defense of wheat stripe-rust infection. Front Plant Sci, 2018, 9: 152.
doi: 10.3389/fpls.2018.00152 pmid: 29527215
[1] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[2] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[3] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[4] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[5] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[6] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[7] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[8] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[9] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[10] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[11] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[12] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[13] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[14] XIANG Jia-Ming, DAI Qian, LIU Li-Jun. Exogenous salicylic acid improves the tolerance of Yunma 1 (Cannabis sativa L.) to copper stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1979-1993.
[15] WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .