Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1065-1079.doi: 10.3724/SP.J.1006.2024.33041

• RESEARCH NOTES • Previous Articles     Next Articles

Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas

WU Xia-Yu(), LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen()   

  1. College of Agronomy, Gansu Agricultural University / State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, Gansu, China
  • Received:2023-06-27 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-17
  • Contact: * E-mail: yinwen@gsau.edu.cn.
  • Supported by:
    National Key Research and Development Pragram of China(2023YFD1900405);National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

Abstract:

Aiming at the problems of high water and fertilizer inputs and low utilization efficiency for maize production in the Oasis irrigation areas, the effects of different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer on photosynthesis physiology, grain yield and quality of maize were investigated to obtain the optimal irrigation levels and nitrogen (N) application ratios of organic-inorganic fertilizer. A filed experiment was conducted with the two-factor split-plot, two irrigation levels (conventional irrigation and 20% reduced irrigation) were used in the main plot and five organic and inorganic nitrogen fertilizer ratios (all inorganic N fertilizer, 75% inorganic N fertilizer and 25% organic fertilizer, 50% inorganic N fertilizer and 50% organic fertilizer, 25% inorganic N fertilizer and 75% organic fertilizer, and all organic fertilizer) were used in the split-plot in order to investigate the response of maize photosynthetic physiology, grain yield, and quality to different water and nitrogen fertilizer management patterns. Compared with the conventional irrigation (I2), 20% reduction irrigation (I1) reduced maize leaf area index (LAI), photosynthetic potential (LAD), net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs), and increased intercellular CO2 concentration (Ci), grain protein content, and grain threonine content; organic and inorganic fertilizers have a significant effect on maize photosynthetic physiological indicators, grain yield and quality, with the increase in the proportion of organic fertilizers, the effect of organic and inorganic fertilizers on maize will gradually change from a positive effect to a negative effect; compared with traditional irrigation combined with the full application of inorganic nitrogen fertilizer (I2F1), 20% reduction of irrigation combined with 75% inorganic nitrogen fertilizer and 25% organic fertilizer (I1F2) increased the maize mean leaf area index (MLAI) by 6.9%-7.1%, and there was no significant change in total photosynthetic potential (TLAD), and the LAI of I1F2 was increased by 5.0%-11.4% from silking to doughing in maize, and LAD was increased by 7.5%-9.1% from silking to doughing. I1F2 increased chlorophyll content (SPAD), Pn, Tr, and Gs, and decreased Ci in maize from tasseling to doughing compared with I2F1. Compared with I2F1, I1F2 increased grain yield by 12.0%-12.5% in maize, increased grain protein content by 6.9%-18.9%, and Phe, Lys, Thr, Trp, Leu, Ile, and Val contents of grain in maize were increased by 29.6%-43.3%, 77.7%-93.3%, 49.7%-51.5%, 18.4%-28.6%, 39.5%-46.0%, 57.4%-78.1%, and 35.1%-41.3%, respectively. Other treatments also had some effects on maize photosynthetic physiology, seed yield and quality indexes, but the combined two-year results showed that the effects of I1F2 were more significant. Therefore, the 20% reduction in irrigation (3240 m3 hm-2) combined with 75% inorganic chemical N fertilizer (270 kg hm-2) and 25% organic fertilizer (90 kg hm-2) treatment was an appropriate water and N management model to achieve high yield and quality of maize production in the northwestern irrigation areas.

Key words: reduced irrigation, organic and inorganic fertilizer application, photosynthetic physiology, grain yield, quality

Fig. 1

Dynamic of precipitation and average air temperature during maize growing season in the experimental area in 2021 and 2022"

Table 1

Irrigation amount and fertilizer amount for each treatment"

处理
Treatment
灌水量
Irrigation volume
(m3 hm-2)
施氮量Nitrogen application amount (kg hm-2) P2O5
(kg hm-2)
有机氮肥
Organic nitrogen fertilizer
无机化学氮肥
Inorganic chemical nitrogen fertilizer
I1F1 3240 0 360 180
I1F2 3240 90 270 180
I1F3 3240 180 180 180
I1F4 3240 270 90 180
I1F5 3240 360 0 180
I2F1 4050 0 360 180
I2F2 4050 90 270 180
I2F3 4050 180 180 180
I2F4 4050 270 90 180
I2F5 4050 360 0 180

Fig. 2

Mean leaf area index of maize across the entire growth period under different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer I1, I2, F1, F2, F3, F4, and F5 denote reduced 20% irrigation, conventional irrigation, all inorganic N fertilizer, 75% inorganic N + 25% organic fertilizer, 50% inorganic N + 50% organic fertilizer, 25% inorganic N + 75% organic fertilizer, and all organic fertilizer, respectively. Different letters denote significant differences between treatments at the 0.05 probability level."

Fig. 3

Leaf area index dynamics of maize across the entire growth period under different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer Treatments are the same as those given in Fig. 2."

Table 2

Effect of different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer on photosynthetic potential of maize across the entire growth period"

年份
Year
灌水水平
Irrigation
level
有机无机肥等
氮配施比例
Equal nitrogen application
ratio of organic-inorganic fertilizer
拔节期-小喇叭口期
Jointing-
Trumpeting
小喇叭口期-
大喇叭口期
Trumpeting-
Big flare
大喇叭口期-抽雄期
Big flare-
Tasseling
抽雄期-
吐丝期
Tasseling-
Silking
吐丝期-
灌浆期
Silking-
Filling
灌浆期-
蜡熟期
Filling-
Doughing
总和
Total
2021 I1 F1 15.3 a 41.1 a 82.9 c 97.5 bcd 115.8 cd 86.6 de 439.3 c
F2 12.0 c 38.2 b 85.7 bc 103.3 a 125.3 a 94.3 a 458.8 b
F3 11.6 cd 35.3 cd 84.1 c 103.3 a 121.3 ab 91.2 b 446.8 c
F4 10.6 de 34.1 d 76.0 de 94.2 de 118.1 bcd 88.0 cd 420.9 d
F5 9.7 e 32.1 e 73.8 e 92.5 de 113.1 d 85.1 e 406.4 e
I2 F1 15.5 a 42.0 a 87.8 ab 100.5 ab 114.8 cd 87.7 cd 448.3 c
F2 14.7 ab 41.2 a 89.3 a 105.0 a 124.2 a 94.3 a 468.7 a
F3 13.7 b 38.5 b 82.6 c 99.7 abc 120.7 ab 91.3 b 446.5 c
F4 12.6 c 36.4 cd 78.6 d 95.2 cde 116.8 bcd 88.5 bc 428.1 d
F5 10.8 de 34.8 d 76.1 de 91.6 e 112.1 de 85.5 de 410.8 e
2022 I1 F1 14.8 ab 41.2 a 84.0 b 98.7 cde 116.3 c 86.5 de 441.5 c
F2 12.5 c 37.7 b 85.4 b 104.3 ab 124.9 a 94.1 a 459.0 b
F3 11.0 d 34.5 cd 84.5 b 104.3 ab 120.1 b 91.0 b 445.4 c
F4 10.6 d 33.6 de 76.1 d 95.4 de 118.9 b 90.2 b 424.8 d
F5 9.4 e 32.0 e 73.6 e 92.6 e 113.7 d 85.9 e 407.2 e
I2 F1 15.0 a 42.1 a 89.1 a 101.3 abc 115.4 c 87.5 cd 450.4 bc
F2 15.0 a 41.9 a 90.6 a 106.3 a 125.0 a 94.7 a 473.5 a
F3 14.2 b 39.3 b 84.0 b 100.6 bcd 120.2 b 90.8 b 449.0 c
F4 12.1 c 35.8 cd 79.2 c 97.0 cde 116.3 c 87.9 c 428.2 d
F5 10.4 d 33.4 de 75.5 d 92.8 e 111.7 e 85.6 e 409.3 e
显著性(P值) Significance (P-value)
年份 Year (Y) NS NS * ** NS NS NS
灌水水平Irrigation level (I) ** ** ** NS * NS NS
有机无机肥等氮配施比例 ** ** ** ** ** ** **
Equal nitrogen application ratio of
organic-inorganic fertilizer (F)
年份×灌水水平 Y×I NS NS NS NS NS NS NS
年份×有机无机肥等氮配施比例 Y×F NS NS NS NS NS NS NS
灌水水平×有机无机肥等氮配施比例I×F ** ** ** ** * NS NS
年份×灌水水平×有机无机肥等氮配施比例 Y×I×F NS NS NS NS NS NS NS

Fig. 4

Effect of different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer on SPAD of maize at major growth stages Treatments are the same as those given in Fig. 2."

Fig. 5

Effect of different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer on photosynthetic properties of maize during the main growth stages Treatments are the same as those given in Fig. 2."

Fig. 6

Response of maize yield to different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer Treatments are the same as those given in Fig. 2. Different letters denote significant differences between treatments at the 0.05 probability level."

Table 3

Influence of different irrigation levels and different irrigation levels and equal nitrogen application ratios of organic- inorganic fertilizer on ash, protein, fat, and starch content in maize"

年份
Year
灌水水平
Irrigation level
有机无机肥等氮配施比例
Equal nitrogen application ratio of organic-inorganic fertilizer
灰分含量
Ash (%)
蛋白含量
Protein (%)
脂肪含量
Fat (%)
淀粉含量
Starch (%)
2021 I1 F1 1.2 a 8.2 a 3.7 ab 65.2 bc
F2 1.2 a 8.1 a 3.6 abc 65.4 bc
F3 1.2 a 7.3 ab 3.5 abc 66.3 abc
F4 1.2 a 6.4 b 3.6 abc 67.3 a
F5 1.2 a 7.4 ab 3.4 bc 66.0 abc
I2 F1 1.2 a 7.5 ab 3.2 c 66.0 abc
F2 1.2 a 7.0 ab 3.8 a 66.3 abc
F3 1.2 a 7.2 ab 3.6 abc 66.2 abc
F4 1.2 a 7.9 a 3.7 ab 64.6 c
F5 1.2 a 7.8 a 3.5 abc 65.4 bc
2022 I1 F1 1.2 a 6.3 bc 3.3 bc 67.5 cd
F2 1.2 a 6.9 a 3.2 c 67.3 d
F3 1.2 a 6.9 a 3.4 bc 67.3 d
F4 1.2 a 6.6 ab 3.7 a 67.3 d
F5 1.2 a 6.7 ab 3.3 bc 67.5 cd
I2 F1 1.2 a 5.8 d 3.3 bc 68.3 a
F2 1.2 a 6.5 abc 3.1 d 68.0 abc
F3 1.2 a 6.0 cd 3.3 bc 68.0 abc
F4 1.2 a 6.8 ab 3.3 bc 67.7 bc
F5 1.2 a 6.8 ab 3.3 bc 67.7 bc
显著性(P值) Significance (P-value)
年份 Year (Y) NS ** ** **
灌水水平Irrigation level (I) NS * NS NS
有机无机肥等氮配施比例 NS NS * NS
Equal nitrogen application ratios of organic-inorganic fertilizer (F)
年份×灌水水平 Y×I NS NS NS **
年份×有机无机肥等氮配施比例 Y×F NS NS * NS
灌水水平×有机无机肥等氮配施比例 I×F NS NS NS **
年份×灌水水平×有机无机肥等氮配施比例 Y×I×F NS NS ** *

Table 4

Effect of different irrigation levels and different irrigation levels and equal nitrogen application ratios of organic-inorganic fertilizer on the essential amino acid content of maize grains"

年份Year 灌水水平Irrigation level 有机无机肥等氮配施比例Equal nitrogen application ratios of organic-inorganic fertilizer 苯丙氨酸
Phe
(mg kg-1)
甲硫氨酸Mel
(mg kg-1)
赖氨酸
Lys
(mg kg-1)
苏氨酸
Thr
(mg kg-1)
色氨酸
Trp
(mg kg-1)
亮氨酸
Leu
(mg kg-1)
异亮氨酸
Ile
(mg kg-1)
缬氨酸
Val
(mg kg-1)
2021 I1 F1 27.2 e 37.0 e 158.1 f 33.6 f 5.9 c 15.3 de 7.6 f 14.0 d
F2 43.5 a 42.7 d 302.5 c 49.7 a 8.1 b 22.5 a 18.0 a 20.7 a
F3 44.3 a 59.5 b 327.1 b 43.3 bc 10.5 a 21.9 ab 16.9 ab 15.9 c
F4 38.6 b 35.0 e 260.1 d 41.3 bc 7.6 b 16.5 d 12.9 cd 15.7 c
F5 33.8 c 52.0 c 173.6 f 36.1 de 7.2 bc 15.1 de 13.8 c 15.5 c
2021 I2 F1 30.3 d 43.2 d 170.2 f 33.2 f 6.8 bc 15.4 de 10.1 e 15.3 c
F2 39.1 b 41.1 d 300.6 c 43.6 b 7.7 b 19.5 c 16.5 ab 19.5 b
F3 38.1 b 64.0 a 357.9 a 42.7 bc 9.9 a 20.5 bc 15.5 b 20.8 a
F4 39.1 b 32.4 f 217.9 e 39.6 cd 7.9 b 15.3 de 11.6 de 15.9 c
F5 32.3 cd 53.5 c 168.9 f 36.3 de 7.1 bc 14.0 e 12.4 cd 15.6 c
2022 I1 F1 30.6 d 40.7 e 167.7 f 32.7 f 6.5 d 15.4 d 10.9 d 13.9 f
F2 41.3 a 43.0 d 320.6 c 49.7 a 7.6 b 22.0 a 17.0 a 19.4 b
F3 39.2 b 57.6 b 358.9 b 42.8 b 10.6 a 20.9 b 15.5 b 20.8 a
F4 36.6 c 32.6 g 254.2 d 40.9 c 7.6 b 17.8 c 12.7 c 15.9 c
F5 32.0 d 52.5 c 186.5 f 36.6 e 7.3 bc 14.4 e 13.2 c 15.3 de
I2 F1 31.9 d 42.6 d 165.8 f 32.8 f 5.9 e 15.8 d 10.8 d 13.7 f
F2 39.8 ab 39.6 e 320.0 c 42.8 b 7.6 b 21.5 ab 16.5 a 19.0 b
F3 36.7 c 62.5 a 383.6 a 40.2 cd 10.3 a 20.8 b 15.4 b 20.5 a
F4 35.8 c 37.6 f 225.6 e 39.1 d 7.6 b 17.7 c 11.5 d 15.8 cd
F5 32.6 d 52.5 c 181.0 f 35.6 e 7.1 c 14.0 e 12.6 c 15.3 e
显著性 (P值) Significance (P-value)
年份 Year (Y) ** NS ** NS NS NS NS NS
灌水水平Irrigation level (I) ** ** NS ** NS ** ** NS
有机无机肥等氮配施比例 ** ** ** ** ** ** ** **
Equal nitrogen application ratios of
organic-inorganic fertilizer (F)
年份×灌水水平 Y×I NS NS NS NS NS * NS NS
年份×有机无机肥等氮配施比例 Y×F ** ** * NS NS * ** **
灌水水平×有机无机肥等氮配施比例 I×F ** ** ** ** NS NS ** **
年份×灌水水平×有机无机肥等氮配施比例 * ** NS NS NS NS * **
Y×I×F

Fig. 7

Correlation analysis on grain yield and quality and photosynthetic physiological indexes of maize under different treatments MLAI, TLAD, SPAD, Pn, Tr, Gs, Ci, GY, CP, EE, ST, Phe, Thr, and Leu denote mean leaf area index, total photosynthetic potential, chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, grain yield, protein, fat, starch, phenylalanine, threonine, and leucine, respectively. ** and * denote significant difference at the 0.01 and 0.05 probability levels, respectively."

Fig. 8

Principal component analysis on grain yield and quality and photosynthetic physiological indexes of maize under different treatments Treatments are the same as those given in Fig. 7."

[1] Zhu S S, Vivanco J M, Manter D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol, 2016, 107: 324-333.
doi: 10.1016/j.apsoil.2016.07.009
[2] 郭喜军, 谢军红, 李玲玲, 王嘉男, 康彩睿, 彭正凯, 王进斌, Setorkwami F, 王林林. 氮肥用量及有机无机肥配比对陇中旱农区玉米光合特性及产量的影响. 植物营养与肥料学报, 2020, 26: 806-816.
Guo X J, Xie J H, Li L L, Wang J N, Kang C R, Peng Z K, Wang J B, Setorkwami F, Wang L L. Appropriate nitrogen fertilizer rate and organic N ratio for satisfactory photosynthesis and yield of maize in dry farming area of Longzhong, Gansu province. J Plant Nutr Fert, 2020, 26: 806-816. (in Chinese with English abstract)
[3] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Peter C, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041-3046.
doi: 10.1073/pnas.0813417106
[4] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929. (in Chinese with English abstract)
[5] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[6] 方成, 代子雯, 李伟明, 王东升, 焦加国, 陈小云, 徐莉. 化肥减施配施不同有机肥对甜糯玉米产量和品质的影响. 生态学杂志, 2021, 40: 1347-1355.
Fang C, Dai Z W, Li W M, Wang D S, Jiao J G, Chen X Y, Xu L. Effects of reduced chemical fertilizer with organic fertilizer application on the yield and grain quality of sweet-waxy corn. Chin J Ecol, 2021, 40: 1347-1355. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202105.003
[7] 张丽芳, 杨成春, 王萍, 李瑶, 李大明, 夏文建. 长期施肥对红壤氮磷养分和玉米生长、氮磷吸收的影响. 浙江农业科学, 2020, 61: 1757-1759.
Zhang L F, Yang C C, Wang P, Li Y, Li D M, Xia W J. Effects of long-term fertilization on nitrogen and phosphorus nutrients in red soil, growth of corn. J Zhejiang Agric Sci, 2020, 61: 1757-1759. (in Chinese with English abstract)
[8] 常宏达, 吕德生, 王振华, 朱艳, 李海强, 李诗莹. 滴灌量和有机无机肥等氮配施对葡萄产量及品质的影响. 干旱地区农业研究, 2022, 40(4): 116-123.
Chang H D, Lyu D S, Wang Z H, Zhu Y, Li H Q, Li S Y. Effects of drip irrigation water amount and equal nitrogen applicating organic-inorganic fertilizer ratios on grape yield and quality. Agric Res Arid Areas, 2022, 40(4): 116-123. (in Chinese with English abstract)
[9] 张晶, 党建友, 张定一, 裴雪霞, 王姣爱, 程麦凤, 闫翠萍. 不同降水年型下小麦产量、品质及水分利用效率对有机无机肥配施的响应. 植物营养与肥料学报, 2020, 26: 1625-1635.
Zhang J, Dang J Y, Zhang D Y, Pei X X, Wang J A, Cheng M F, Yan C P. Response of yield, quality and water use efficiency of wheat to different combinations of organic manures and chemical fertilizers under different yearly precipitations. J Plant Nutr Fert, 2020, 26: 1625-1635. (in Chinese with English abstract)
[10] 聂佳如. 有机肥与化肥配施对土壤养分的影响研究. 环境科学与管理, 2016, 41(9): 52-55.
Nie J R. Influence of organic manure and chemical fertilizer on soil nutrients. J Environ Manag, 2016 41(9): 52-55. (in Chinese with English abstract)
[11] 冯悦晨, 于志勇, 赵萍萍. 有机无机配施对夏玉米产量构成及水氮利用的影响. 安徽农业大学学报, 2021, 48(2): 185-190.
Feng Y C, Yu Z Y, Zhao P P. Effects of organic and inorganic fertilization on yield component and water and nitrogen utilization of summer maize on the loess plateau. J Anhui Agric Univ, 2021, 48(2): 185-190. (in Chinese with English abstract)
[12] 周芸, 李永梅, 范茂攀, 王自林, 徐智, 张丹, 赵吉霞. 有机肥等氮替代化肥对红壤团聚体及玉米产量和品质的影响. 作物杂志, 2019, (4): 125-132.
Zhou Y, Li Y M, Fan M P, Wang Z L, Xu Z, Zhang D, Zhao J X. Effects of nitrogen in organic manure replacing chemical nitrogenous fertilizer on aggregates of red soil. Crops, 2019, (4): 125-132. (in Chinese with English abstract)
[13] Jiang Z Z, Zhang H L, Jiao P, Wei X T, Liu S Y, Guan S Y, Ma Y Y. The integration of metabolomics and transcriptomics provides new insights for the identification of genes key to auxin synthesis at different growth stages of maize. Int J Mol Sci, 2022, 23: 13195.
doi: 10.3390/ijms232113195
[14] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49: 3934-3943.
doi: 10.3864/j.issn.0578-1752.2016.20.008
Xie J, Zhao Y N, Chen X J, Li D P, Xu C L, Wang K, Zhang Y Q, Shi X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Sci Agric Sin, 2016, 49: 3934-3943. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.20.008
[15] Ren F L, Sun N, Misselbrook T H, Wu L, Xu M G, Zhang F S, Xu W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: a meta-analysis. Sci Total Environ, 2022, 850: 158064.
doi: 10.1016/j.scitotenv.2022.158064
[16] 臧小平, 韩丽娜, 马蔚红, 周兆禧, 钟爽, 刘永霞. 非饱和灌溉条件下香蕉施肥减量技术研究. 中国农学通报, 2014, 30(13): 247-251.
Zang X P, Han L N, Ma W H, Zhou Z X, Zhong S, Liu Y X. Reduction fertilization for banana under unsaturated irrigation. Chin Agric Sci Bull, 2014, 30(13): 247-251. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2013-2789
[17] 张悦, 张会慧, 周琳, 魏殿文. 控水灌溉对蓝莓园土壤养分和植株生长与叶绿素荧光及果实品质的影响. 湖南农业大学学报(自然科学版), 2015, 41: 503-507.
Zhang Y, Zhang H H, Zhou L, Wei D W. Effects of water- controlled irrigation on soil nutrients, plant growth, chlorophyll fluorescence characteristics and fruit quality of blueberry (Semen trigonellae). J Hunan Agric Univ (Nat Sci Edn), 2015, 41: 503-507. (in Chinese with English abstract)
[18] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47: 125-137.
doi: 10.3724/SP.J.1006.2021.04077
Feng K Y, Wang N, Nan H Y, Gao J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agron Sin, 2021, 47: 125-137. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04077
[19] 范铭, 李强, 张丹, 晋小军, 曹爱农. 堆肥替代化肥对玉米产量和水分利用效率的影响. 干旱地区农业研究, 2017, 35(2): 143-146.
Fan M, Li Q, Zhang D, Jin X J, Cao A N. Effects of compost replacement fertilizer on grain yield and water use efficiency of maize. Agric Res Arid Areas, 2017, 35(2): 143-146. (in Chinese with English abstract)
[20] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48: 437-447.
doi: 10.3724/SP.J.1006.2022.01093
Xu L L, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agron Sin, 2022, 48: 437-447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.01093
[21] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展. 作物学报, 2022, 48: 1871-1883.
doi: 10.3724/SP.J.1006.2022.13024
Guo Y, Chai Q, Yin W, Fan H. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize. Acta Agron Sin, 2022, 48: 1871-1883. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13024
[22] 杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28: 1003-1014.
Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. J Plant Nutr Fert, 2022, 28: 1003-1014. (in Chinese with English abstract)
[23] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应. 作物学报, 2023, 49: 1316-1326.
Li P, Chen G P, Gou Z W, Yin W, Fan Z L, Hu F L, Fan H, Chai Q. Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area. Acta Agron Sin, 2023, 49: 1316-1326. (in Chinese with English abstract)
[24] Wang C, Ma H Y, Feng Z H, Yan Z X, Song B L, Wang J L, Zheng Y Y, Hao W P, Zhang W Y, Yao M J, Wang Y S. Integrated organic and inorganic fertilization and reduced irrigation altered prokaryotic microbial community and diversity in different compartments of wheat root zone contributing to improved nitrogen uptake and wheat yield. Sci Total Environ, 2022, 842: 156952.
doi: 10.1016/j.scitotenv.2022.156952
[25] 胡小璇, 江尚焘, 安祥瑞, 吴文利, 谢昶琰, 沈宗专, 王蓓蓓, 魏志远, 徐阳春, 董彩霞, 沈其荣. 有机无机肥配施对芒果产量与品质及经济效益的影响. 南京农业大学学报, 2020, 43: 1107-1115.
Hu X X, Jiang S T, An X R, Wu W L, Xie C Y, Shen Z Z, Wang B B, Wei Z Y, Xu Y C, Dong C X, Shen Q R. Effects of combined application of organic and inorganic fertilizers on mango yield, quality and economic benefit. J Nanjing Agric Univ, 2020, 43: 1107-1115. (in Chinese with English abstract)
[26] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362-2370.
pmid: 26685599
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2362-2370. (in Chinese with English abstract)
pmid: 26685599
[27] 林治安, 赵秉强, 袁亮, Hwat B S. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42: 2809-2819.
Lin Z A, Zhao B Q, Yuan L, Hwat B S. The effects of long-term location use of organic manure and fertilizers on crop yield and soil nutrients. Sci Agric Sin, 2009, 42: 2809-2819. (in Chinese with English abstract)
[28] 徐晨, 张丽华, 于江, 赵仁杰, 孙宁, 闫伟平, 赵洪祥, 李前, 张治安, 边少锋. 不同滴灌模式下玉米光合响应特征、水分利用及生长发育. 生态学杂志, 2023, 42: 869-879.
Xu C, Zhang L H, Yu J, Zhao R J, Sun N, Yan W P, Zhao H X, Li Q, Zhang Z A, Bian S F. Photosynthetic response characteristics, water use and growth and development of maize under different drip irrigation modes. Chin J Ecol, 2023, 42: 869-879. (in Chinese with English abstract)
doi: DOI: 10.13292/j.1000-4890.202304.022
[29] 王晓娟, 贾志宽, 梁连友, 丁瑞霞, 王敏, 李涵. 不同有机肥量对旱地玉米光合特性和产量的影响. 应用生态学报, 2012, 23: 419-425.
Wang X J, Jia Z K, Liang L Y, Ding R X, Wang M, Li H. Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize. Chin J Appl Ecol, 2012, 23: 419-425. (in Chinese with English abstract)
[30] 杨玉玲, 刘文兆, 王俊, 张益望. 配施钾肥、有机肥对旱地春玉米光合生理特性和产量的影响. 西北农业学报, 2009, 18(3): 116-121.
Yang Y L, Liu W Z, Wang J, Zhang Y W. Effects of potassium and organic fertilizer on photosynthetic physiological characteristics and yield of spring maize in dry lands. Acta Agric Boreali-Occident Sin, 2009 18(3): 116-121. (in Chinese with English abstract)
[31] 王进斌, 谢军红, 李玲玲, Eunice E, 彭正凯, 邓超超, 沈吉成, 颉健辉. 氮肥运筹对陇中旱农区玉米光合特性及产量的影响. 草业学报, 2019, 28(1): 60-69.
doi: 10.11686/cyxb2018096
Wang J B, Xie J H, Li L L, Eunice E, Peng Z K, Deng C C, Shen J C, Xie J H. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China. Acta Pratac Sin, 2019, 28(1): 60-69. (in Chinese with English abstract)
[32] 陈鸽, 汤春纯, 李祖胜, 黄运湘, 曾希柏, 文炯, 高雪, 张骞. 不同施肥措施对洞庭湖区旱地肥力及作物产量的影响. 中国生态农业学报, 2017, 25: 689-697.
Chen G, Tang C C, Li Z S, Huang Y X, Zeng X B, Wen J, Gao X, Zhang Q. Influence of different fertilization modes on soil fertility and crop yield in Dongting Lake upland areas. Chin J Eco- Agric, 2017, 25: 689-697. (in Chinese with English abstract)
[33] 潘剑玲, 代万安, 尚占环, 郭瑞英. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013, 21: 526-535.
Pan J L, Dai W A, Shang Z H, Guo R Y. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chin J Eco-Agric, 2013, 21: 526-535 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2013.00526
[34] 赵旭, 宋清晖, 王晓慧, 王学刚, 冯宇涵, 孙思淼, 李洪涛, 常伟, 宋福强. 几种有机肥对玉米光合特性及土壤酶活性的影响. 中国农学通报, 2021, 37(3): 36-42.
doi: 10.11924/j.issn.1000-6850.casb2020-0341
Zhao X, Song Q H, Wang X H, Wang X G, Feng Y H, Sun S M, Li H T, Chang W, Song F Q. Several organic fertilizers: effects on photosynthetic characteristics of maize and soil enzyme activities. Chin Agric Sci Bull, 2021, 37(3): 36-42. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0341
[35] 徐晨, 闫伟平, 孙宁, 刘晓龙, 赵洪祥, 谭国波, 武志海, 张治安, 张丽华, 边少锋. 不同灌水处理对春玉米生理特性的影响. 灌溉排水学报, 2021, 40(1): 7-14.
Xu C, Yan W P, Sun N, Liu X L, Zhao H X, Tan G B, Wu Z H, Zhang Z A, Zhang L H, Bian S F. The impacts of irrigation amount on physiological characteristics and yield of spring maize. J Irrig Drain, 2021, 40(1): 7-14. (in Chinese with English abstract)
[36] 韩建, 尹兴, 郭景丽, 吉艳芝, 张杰, 张丽娟, 马文奇. 有机肥施用对红地球葡萄产量、品质及土壤环境的影响. 植物营养与肥料学报, 2020, 26: 131-142.
Han J, Yin X, Guo J L, Ji Y Z, Zhang J, Zhang L J, Ma W Q. Effects of manure application on yield and quality of Red Globe grape and soil environment. J Plant Nutr Fert, 2020, 26: 131-142. (in Chinese with English abstract)
[37] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选. 作物学报, 2023, 49: 1292-1304.
Li H, Wang X M, Liu M, Liu P Z, Li Q L, Wang X L, Wang R, Li J. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize. Acta Agron Sin, 2023, 49: 1292-1304. (in Chinese with English abstract)
[38] 丁维婷, 武雪萍, 张继宗, 姜宇, 房静静, 宋霄君, 李婧妤, 郑凤君, 张孟妮, 刘晓彤. 长期有机无机配施对暗棕壤土壤酶活性及春麦产量品质的影响. 中国土壤与肥料, 2020, (6): 1-8.
Ding W T, Wu X P, Zhang J Z, Jiang Y, Fang J J, Song X J, Li J Y, Zheng F J, Zhang M N, Liu X T. Effects of long-term organic- inorganic combined application on enzyme activity of dark brown soil and yield, quality of spring wheat. Soil Fert Sci China, 2020, (6): 1-8. (in Chinese with English abstract)
[39] Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736-749.
doi: 10.1111/pbi.2019.17.issue-4
[40] 张瑞, 王鸿飞, 吴怡慧, 党秀丽, 张玉玲, 虞娜, 邹洪涛, 张玉龙. 化肥与有机肥配施对设施土壤团聚体稳定性及其有机碳、全氮含量的影响. 中国土壤与肥料, 2023, (2): 1-9.
Zhang R, Wang H F, Wu Y H, Dang X L, Zhang Y L, Yu N, Zou H T, Zhang Y L. Effects of combined application of chemical fertilizer and manure on soil aggregate stability and its organic carbon and total nitrogen contents in greenhouse. Soil Fert Sci China, 2023, (2): 1-9. (in Chinese with English abstract)
[1] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[2] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[3] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[4] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[5] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[6] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[7] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[8] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[9] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[10] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[11] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[12] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[13] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[14] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[15] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .