Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2078-2090.doi: 10.3724/SP.J.1006.2024.31074

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions

LIANG Jin-Yu1,4(), YIN Jia-De2,3,4, HOU Hui-Zhi2,3,4, XUE Yun-Gui1,4, GUO Hong-Juan1,4, WANG Shuo1,4, ZHAO Qi-Zhi1,4, ZHANG Xu-Cheng1,2,3,4,*(), XIE Jun-Hong1,*()   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Institute of Dry Land Farming, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    3Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
    4Key Laboratory of Green and Low Carbon Dryland Agriculture in Northwest China, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, Gansu, China
  • Received:2023-11-30 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-24
  • Contact: * E-mail: gszhangxuch@163.com;E-mail: xiejh@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1900700);Science and Technology Program of Gansu Province(22JR5RA763);Science and Technology Program of Gansu Province(23JRRA1340);Science and Technology Program of Gansu Province(20JR10RA464);Open Fund for 2022 of the Northeast Plain Agricultural Green and Low Carbon Key Laboratory of the Ministry of Agriculture and Rural Affairs.

Abstract:

Deep fertilization can improve the water and fertilizer use efficiency of dryland crops, which is one of the important technical ways to increase crop yield, but there is a lack of systematic research on its nutritional physiological mechanism, especially from the perspective of ecological stoichiometric characteristics of flag leaves. In this study, three treatments, 30 cm deep fertilization (D30), 15 cm shallow fertilization (D15) and no fertilization (CK) were conducted in 2021 and 2022 with ‘Longchun 35’ as the test cultivar. The effects of different treatments on the contents of carbon (C), nitrogen (N), phosphorus (P), and ecological stoichiometric characteristics (C/N, C/P, N/P) of spring wheat flag leaves from booting to filling stage were studied. The effects of nutrient content and ecological stoichiometric characteristics of flag leaves on SPAD value, Pn, shoot growth rate, dry matter accumulation, and yield formation of flag leaves in spring wheat were revealed. The results showed that the C/N value of D30 flag leaves at the grain filling stage was 2.1%?6.4% and 5.4%?10.2% lower than D15 and CK, respectively. The C/P values decreased by 3.8%?5.2% and 5.4%?6.0%, respectively. In 2021, the distribution of N/P values increased by 1.4% and 4.1%, and in 2022, the N/P values decreased by 1.6% and 0.2%, respectively. Compared with D15 and CK, the SPAD values of D30 flag leaves increased by 1.8%?6.5% and 15.5%?18.2%, respectively. Pn increased by 21.6%, 27.0%, 28.5%?36.6%, respectively. Compared with D15 and CK, the growth rate of D30 shoots increased by 22.1%?41.2% and 68.4%?80.8%, respectively. The dry matter accumulation of D30 at maturity stage increased by 10.6%?11.1% compared with D15 and CK, respectively. The output increased by 15.7%?15.9% and 46.5%?49.3%, respectively. The contribution rate of nitrogen fertilizer in D30 increased by 46.6%?52.4% compared with D15. The partial productivity of nitrogen fertilizer increased by 15.7%?16.0%. The agronomic efficiency of nitrogen fertilizer increased by 69.6%?76.7%. Correlation analysis showed that the contents of C, N, and P in flag leaves of spring wheat at grain filling stage were positively correlated with SPAD value, Pn, and dry matter accumulation in flag leaves. The ecological stoichiometric characteristics of flag leaf were negatively correlated with SPAD value, Pn and dry matter accumulation of flag leaf. Therefore, 30 cm deep fertilization under drought conditions increased the contents of C, N and P in flag leaves from booting to filling stage, delayed the decrease of N and P contents in flag leaves after flowering, optimized the ecological stoichiometric characteristics of flag leaves, reduced the restriction of N and P on the photosynthesis of flag leaves of spring wheat, increased the growth rate of Pn and shoots of flag leaves of spring wheat, delayed the senescence of flag leaves, and promoted the increase of yield.

Key words: spring wheat, drought, deep fertilization, ecological stoichiometric characteristics, senescence of flag leaves

Fig. 1

Daily average temperature from 2021 to 2022"

Table 1

Experimental fertilization depth"

处理
Treatment
施肥深度Fertilization depth
15 cm 30 cm
不施肥(CK) No fertilization 0 0
化肥全部浅施15 cm (D15) Deeply fertilization of fertilizer in 15 cm 100% 0
化肥全部深施30 cm (D30) Deeply fertilization of fertilizer in 30 cm 0 100%

Fig. 2

The contents of C, N, and P in the flag leaves of spring wheat in each treatment BO: booting; HE: heading; FL: flowering; FI: filling."

Fig. 3

C/N value of flag leaves of spring wheat in each treatment Abbreviations are the same as those given in Fig. 2. Different lowercase letters in the same growth stage means significant difference among treatments at the 0.05 probability level."

Fig. 4

C/P-value of flag leaves of spring wheat in each treatment Abbreviations are the same as those given in Fig. 2. Different lowercase letters in the same growth stage means significant difference among treatments at the 0.05 probability level."

Fig. 5

N/P value of flag leaves of spring wheat in each treatment Abbreviations are the same as those given in Fig. 2. Different lowercase letters in the same growth stage means significant difference among treatments at the 0.05 probability level."

Fig. 6

SPAD values of flag leaves of spring wheat in each treatment Abbreviations are the same as those given in Fig. 2. Different lowercase letters in the same growth stage means significant difference among treatments at the 0.05 probability level."

Fig. 7

Pn of spring wheat flag leaves in each treatment Abbreviations are the same as those given in Fig. 2."

Fig. 8

Shoot growth rate of spring wheat in each treatment BO: booting; HE: heading; FL: flowering; FI: filling; HA: harvesting."

Fig. 9

Dry matter accumulation of spring wheat in each treatment Abbreviations are the same as those given in Fig. 8. Different lowercase letters in the same growth stage means significant difference among treatments at the 0.05 probability level."

Table 2

Treatment of different on spring wheat yield and yield composition"

年份
Year
处理
Treatment
小穗数
Spikelet number
穗粒数
Grain number
千粒重
1000-grain weight (g)
产量
Yield
(kg hm-2)
较CK增产率
Yield increase rate compared to CK (%)
2021 CK 14.00±0.58 b 38.33±0.88 c 38.34±0.12 c 4681.53±120.57 c
D15 14.33±0.33 ab 43.33±0.33 b 42.84±0.18 b 5912.95±69.61 b 26.3
D30 15.67±0.33 a 46.67±0.67 a 46.14±0.08 a 6857.75±90.70 a 46.5
2022 CK 12.33±0.33 c 35.67±0.88 c 40.74±0.78 c 4623.14±29.78 c
D15 13.67±0.33 b 43.67±0.33 b 42.91±0.62 b 5966.03±53.08 b 29.0
D30 16.00±0.00 a 46.33±0.33 a 46.76±0.33 a 6900.21±59.11 a 49.3

Fig. 10

D15 and D30 nitrogen use efficiency NCR: nitrogen contribution percentage; PFPN: partial factor productivity of applied nitrogen fertilizer; NAE: nitrogen agronomic efficiency."

Fig. 11

Correlation analysis from flag picking to grain filling period in spring wheat C: flag leaf carbon content; N: flag leaf nitrogen content; P: flag leaf phosphorus content; C/N: flag leaf carbon nitrogen ratio; C/P: flag leaf carbon-phosphorus ratio; N/P: flag leaf nitrogen to phosphorus ratio; SPAD: soil and plant analyzer development; Pn: net photosynthetic rate of flag leaves; DM: dry matter accumulation. * P ≤ 0.05; ** P ≤ 0.01."

[19] 张永清, 苗果园. 冬小麦根系对施肥深度的生物学响应研究. 中国生态农业学报, 2006, 14(4): 72-75.
Zhang Y Q, Miao G Y. Biological response of winter wheat root system to fertilization depth. Chin J Eco-Agric, 2006, 14(4): 72-75 (in Chinese with English abstract).
[20] 姜超强, 王火焰, 卢殿君, 周健民, 王世济, 祖朝龙. 一次性根区穴施尿素提高夏玉米产量和养分吸收利用效率. 农业工程学报, 2018, 34(12): 146-153.
Jiang C Q, Wang H Y, Lu D J, Zhou J M, Wang S J, Zu C L. Single fertilization of urea in root zone improving crop yield, nutrient uptake and use efficiency in summer maize. Trans CSAE, 2018, 34(12): 146-153 (in Chinese with English abstract).
[21] 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展. 中国沙漠, 2010, 30: 296-302.
Wu W, He X D, Zhou Q X. Research progress on the stoichiometric characteristics of nitrogen phosphorus ratio in ecosystems. J Desert Res, 2010, 30: 296-302 (in Chinese with English abstract).
[22] Wingle A, Purdy S, MacLean J A, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot, 2006, 57: 391-399.
doi: 10.1093/jxb/eri279 pmid: 16157653
[23] Zhang Z S, Song X L, Lu X G, Xue Z S. Ecological stoichiometry of carbon, Nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. J Soils Sediments, 2013, 13: 1043-1051.
[24] Garcia N S, Bonachela J A, Martiny A C. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus. ISME J, 2016, 10: 2715-2724.
doi: 10.1038/ismej.2016.50 pmid: 27058506
[25] 尹嘉德, 侯慧芝, 张绪成, 王红丽, 于显枫, 方彦杰, 马一凡, 张国平, 雷康宁. 全膜覆土下施有机肥对春小麦旗叶碳氮比、光合特性和产量的影响. 应用生态学报, 2020, 31: 3749-3757.
doi: 10.13287/j.1001-9332.202011.029
[1] 鲁英超, 李娜, 姜颖. 干旱胁迫对小麦形态与生理指标及产量影响的研究进展. 现代农业科技, 2023, (16): 10-13.
Lu Y C, Li N, Jiang Y. Research progress on the effects of drought stress on wheat morphology, physiological indicators, and yield. Mod Agric Sci Technol, 2023, (16): 10-13 (in Chinese).
[2] Wang X, Deng Y, Gao L, Kong F, Shen G, Duan B, Wang Z, Dai M, Han Z. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress. Genomics, 2022, 114: 110465.
[3] 段文学, 于振文, 石玉, 张永丽, 赵俊晔. 施氮深度对旱地小麦耗水特性和干物质积累与分配的影响. 作物学报, 2013, 39: 657-664.
doi: 10.3724/SP.J.1006.2013.00657
Duan W X, Yu Z W, Shi Y, Zhang Y L, Zhao J Y. Effects of nitrogen application depth on water consumption characteristics and dry matter accumulation and distribution in rainfed wheat. Acta Agron Sin, 2013, 39: 657-664 (in Chinese with English abstract).
[4] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018, 51: 1518-1526.
doi: 10.3864/j.issn.0578-1752.2018.08.009
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018, 51: 1518-1526 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.08.009
[5] 张永清, 李华, 苗果园. 施肥深度对春小麦根系分布及后期衰老的影响. 土壤, 2006, 38: 110-112.
Zhang Y Q, Li H, Miao G Y. Effect of fertilization depth on distribution and late senescence of root system of spring wheat. Soils, 2006, 38: 110-112 (in Chinese with English abstract).
[6] 李永虎, 曹梦琳, 杜慧玲, 郭平毅, 张海颖, 郭美俊, 原向阳. 施肥位置及施肥量对杂交谷子干物质累积、转运和产量的影响. 中国农业科学, 2019, 52: 4177-4190.
doi: 10.3864/j.issn.0578-1752.2019.22.021
[25] Yin J D, Hou H Z, Zhang X C, Wang H L, Yu X F, Fang Y J, Ma Y F, Zhang G P, Lei K N. Effects of organic fertilizer application on flag leaf C/N ratio, photosynthetic characteristics and yield of spring wheat with full plastic film mulching. Chin J Appl Ecol, 2020, 31: 3749-3757 (in Chinese with English abstract).
[26] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302-1310.
doi: 10.11869/j.issn.100-8551.2020.06.1302
Zhang X J, Wei Y B, Fan Z L, Chai Q. Dynamics of photosynthetic sources and yield performance of densely planted maize with reduced water and nitrogen application in oasis irrigation areas. J Nucl Agric Sci, 2020, 34: 1302-1310 (in Chinese with English abstract).
[27] 谭彩霞, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 不同品质类型小麦旗叶光合特性及其与产量的相关性研究. 扬州大学学报, 2019, 40(6): 30-34.
Tan C X, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Photosynthetic physiological characteristics in flag leaf of different quality types of wheat and its correlation with yield. J Yangzhou Univ, 2019, 40(6): 30-34 (in Chinese with English abstract).
[28] 孙旭生, 林琪, 李玲燕, 姜雯, 翟延举. 氮素对超高产小麦生育后期光合特性及产量的影响. 植物营养与肥料学报, 2008, 14: 840-844.
Sun X S, Lin Q, Li L Y, Jiang W, Zhai Y J. Effects of nitrogen supply on photosynthetic characteristics at later developing stages and yield in superhigh-yield winter wheat. Plant Nutr Fert Sci, 2008, 14: 840-844 (in Chinese with English abstract).
[29] 董剑, 赵万春, 陈其皎, 李哲清, 刘俊, 庞红喜, 高翔. 陕西关中地区不同冬小麦品种晚播高产的适宜播期和密度. 西北农业学报, 2010, 19(3): 66-69.
Dong J, Zhao W C, Chen Q J, Li Z Q, Liu J, Pang H X, Gao X. Researches on suitable planting date and sowing rate for the late-sown high yield of different winter wheat cultivars in Guanzhong area of Shaanxi. Acta Agric Boreali-Occident Sin, 2010, 19(3): 66-69 (in Chinese with English abstract).
[30] 孙雪芳, 丁在松, 侯海鹏, 葛均筑, 唐丽媛, 赵明. 不同春玉米品种花后光合物质生产特点及碳氮含量变化. 作物学报, 2013, 39: 1284-1292.
doi: 10.3724/SP.J.1006.2013.01284
[6] Li Y H, Cao M L, Du H L, Guo P Y, Zhang H Y, Guo M J, Yuan X Y. Effect of fertilization location and amount on dry matter accumulation, translocation and yield of hybrid millet. Sci Agric Sin, 2019, 52: 4177-4190 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.22.021
[7] 侯慧芝, 张绪成, 尹嘉德, 方彦杰, 王红丽, 于显枫, 马一凡, 张国平, 雷康宁. 旱地化肥分层和深施对春小麦水肥利用及产量的影响. 中国农业科学, 2022, 55: 3289-3302.
doi: 10.3864/j.issn.0578-1752.2022.17.003
Hou H Z, Zhang X C, Yin J D, Fang Y J, Wang H L, Yu X F, Ma Y F, Zhang G P, Lei K N. Effects of deep and layered application of reduced chemical nitrogen fertilizer on water, nutrient utilization and yield of spring wheat in rain-fed arid area. Sci Agric Sin, 2022, 55: 3289-3302 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.17.003
[8] 曲晓莲, 李耕, 仲锦维, 王升臣, 张雅芹. 尿素类型与施肥深度对冬小麦花后旗叶光合特性与产量的影响. 山东农业科学, 2021, 53(12): 88-95.
Qu X L, Li G, Zhong J W, Wang S C, Zhang Y Q. Effects of urea type and fertilization depth on photosynthetic characteristics of flag leaves after anthesis and yield of winter wheat. Shandong Agric Sci, 2021, 53(12): 88-95 (in Chinese with English abstract).
[9] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 2010, 34: 2-6.
doi: 10.3773/j.issn.1005-264x.2010.01.002
He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chin J Plant Ecol 2010, 34: 2-6 (in Chinese).
[10] Sardans J, Rivas-Ubach A, Peñuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemi, 2012, 111: 1-39.
[11] Koerselman W, Meuleman A F M. The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol, 1996, 33: 1441-1450.
[12] 戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44: 1585-1595.
doi: 10.3864/j.issn.0578-1752.2011.08.006
[30] Sun X F, Ding Z S, Hou H P, Ge J Z, Tang L Y, Zhao M. Post-anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize. Acta Agron Sin, 2013, 39: 1284-1292 (in Chinese with English abstract).
[31] 羊留冬, 杨燕, 王根绪, 郭剑英, 杨阳. 短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响. 生态学报, 2011, 31: 3668-3676.
Yang L D, Yang Y, Wang G X, Guo J Y, Yang Y. Short-term effects of warming on growth and stoichiometrical characteristics of Abies fabiri (Mast.) Craib seedling in Gongga mountain. Acta Ecol Sin, 2011, 31: 3668-3676 (in Chinese with English abstract).
[32] Ahmad I, Kamran M, Yang X, Meng X, Ali S, Ahmad S, Zhang X, Bilegjargal B, Ahmad B, Liu T. Effects of applying uniconazole alone or combined with manganese on the photosynthetic efficiency, antioxidant defense system, and yield in wheat in semiarid regions. Agric Water Manag, 2019, 216: 400-414.
[33] 陈云, 李玉强, 王旭洋, 牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报, 2021, 41: 4213-4225.
Chen Y, Li Y Q, Wang X Y, Niu Y Y. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China. Acta Ecol Sin, 2021, 41: 4213-4225 (in Chinese with English abstract).
[34] 肖凯, 张荣铣. 氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制. 植物营养与肥料学报, 1998, 5: 371-378.
Xiao K, Zhang R X. The physiological mechanism of nitrogen nutrition regulating flag leaf senescence and photosynthetic function decline in wheat. Plant Nutr Fert Sci, 1998, 5: 371-378 (in Chinese with English abstract).
[35] 郭天财, 冯伟, 赵会杰, 薛国典, 王化岑, 王永华, 姚战军. 两种穗型冬小麦品种旗叶光合特性及氮素调控效应. 作物学报, 2004, 30: 115-121.
Guo T C, Feng W, Zhao H J, Xue G D, Wang H C, Wang Y H, Yao Z J. Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type. Acta Agron Sin, 2004, 30: 115-121 (in Chinese with English abstract).
[12] Dai M H, Zhao J R, Yang G H, Wang R H, Chen G P. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. Sci Agric Sin, 2011, 44: 1585-1595 (in Chinese with English abstract).
[13] 付为国, 王凡坤, 赵云, 滕博群, 王雨轩. 土壤氮磷化学计量特征对小麦光合气体交换参数和叶绿素荧光参数的影响. 西北植物学报, 2016, 36: 1435-1442.
Fu W G, Wang F K, Zhao Y, Teng B Q, Wang Y X. Effects of nitrogen and phosphorus stoichiometric characteristics on photosynthetic gas exchange and chlorophyll fluorescence of wheat. Acta Bot Boreali-Occident Sin, 2016, 36: 1435-1442 (in Chinese with English abstract).
[14] 马小龙, 王朝辉, 曹寒冰, 佘旭, 何红霞, 包明, 宋庆赟, 刘金山. 黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系. 植物营养与肥料学报, 2017, 23: 1135-1145.
Ma X L, Wang Z H, Cao H B, She X, He H X, Bao M, Song Q Y, Liu J S. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau. J Plant Nutr Fert, 2017, 23: 1135-1145 (in Chinese with English abstract).
[15] 何杰, 李冰, 王昌全, 张敬昇, 向毫, 尹斌, 梁靖越. 不同控释氮肥比率对土壤无机氮、微生物及小麦生长的影响. 麦类作物学报, 2017, 37: 349-356.
He J, Li B, Wang C Q, Zhang J S, Xiang H, Yin B, Liang J Y. Effect of different controlled release nitrogen fertilizer rate on soil inorganic nitrogen, microorganism and wheat growth. J Triticeae Crops, 2017, 37: 349-356 (in Chinese with English abstract).
[16] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2013. pp 72-75.
Bao S D. Soil Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2013. pp 72-75.
[17] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
[36] 米国华, 张福锁, 王震宇. 小麦超高产生理基础探讨: 小麦后期碳氮代谢互作与粒重形成. 中国农业大学学报, 1997, 2(5): 73-78.
Mi G H, Zhang F S, Wang Z Y. Discussion on the physiological basis of superhigh wheat yield: grain weight formation in relation to the post anthesis interaction between carbon and nitrogen. J China Agric Univ, 1997, 2(5): 73-78 (in Chinese with English abstract).
[37] 杨世丽, 张凤路, 贾秀领, 马瑞昆, 姚艳荣. 水氮耦合对冬小麦叶片叶绿素含量和光合速率的影响. 华北农学报, 2008, 23(5): 161-164.
doi: 10.7668/hbnxb.2008.05.035
Yang S L, Zhang F L, Jia X L, Ma R K, Yao Y R. Effects of water and nitrogen coupling on chlorophyll content and photosythetic rate of winter wheat leaves. Acta Agric Boreali-Sin, 2008, 23(5): 161-164 (in Chinese with English abstract).
[38] 杨铁钢, 戴廷波, 曹卫星. 不同施氮水平下GS抑制剂对小麦灌浆期碳氮代谢的影响. 麦类作物学报, 2007, 27: 671-676.
Yang T G, Dai T B, Cao W X. Effects of GS inhibitor glufosinate on carbon and nitrogen assimilation during wheat grain filling under different nitrogen supply. J Triticeae Crops, 2007, 27: 671-676 (in Chinese with English abstract).
[17] Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924 (in Chinese with English abstract).
[18] 卜东升, 刘冬碧, 肖依波, 代勋, 毛波, 高红兵, 王玲, 吴茂前, 张继松. 江汉平原稻区16个水稻品种对氮肥的响应及其利用率差异. 土壤通报, 2021, 52: 1182-1192.
Bu D S, Liu D B, Xiao Y B, Dai X, Mao B, Gao H B, Wang L, Wu M Q, Zhang J S. Response of 16 rice varieties to nitrogen fertilizer and nitrogen use efficiency in the Jianghan Plan Area. Chin J Soil Sci, 2021, 52: 1182-1192 (in Chinese with English abstract).
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, and CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11-Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[3] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[4] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[5] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[6] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[7] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[8] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[9] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[10] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[11] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[12] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[13] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[14] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[15] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .