Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1351-1360.doi: 10.3724/SP.J.1006.2024.32027

• RESEARCH NOTES • Previous Articles    

Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice

ZHU Zhong-Lin1(), WEN Yue1, ZHOU Qi1, WU Yan-Fei1, DU Xue-Zhu1,2,*(), SHENG Feng1,*()   

  1. 1School of Life Sciences, Hubei University / State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, Hubei, China
    2Hubei Hongshan Laboratory, Wuhan 430062, Hubei, China
  • Received:2023-07-20 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-19
  • Contact: E-mail: shengfsk@163.com; E-mail: duxeuzhusk@163.com
  • Supported by:
    Wuhan Municipal Key Technology Project of Biotechnology(2022021302024851);Hubei Provincial Key Laboratory of Grain Crop Germplasm Innovation and Genetic Improvement(2018lzjj01)

Abstract:

Cyclic nucleotide-gated ion channels are ligand-gated cationic channels that exist in animals and plants, which are an important part of eukaryotic signaling cascades. In this study, OsCNGC10 (cyclic nucleotide-gated channel) gene in rice was used, and the overexpression vector pU1301-CNGC10-Flag and the double-target knockout vector pRGEB32-CRISPR/cas9-cngc10 were constructed. The knockout and overexpression materials were obtained by Agrobacterium-mediated genetic transformation. Homozygous plants oscngc10-2 and OE-CNGC10-6 were isolated from T2 generation. The analysis of stem characteristics and lodging resistance of transgenic plants showed that oscngc10-2 had enhanced stem strength and lodging resistance. Stem cell wall sections and tissue composition analysis showed that oscngc10-2 increased lodging resistance due to the increase of stem wall thickness, parenchyma cell abundance, and lignin content. The knockout of OsCNGC10 increased the lignin content and the abundance of stem-cell wall parenchyma cells. The overexpression of OsCNGC10 reduced stem wall thickness, lignin content, and cell abundance in stem cell wall, while the knockdown of OsCNGC10 increased lignin content and increased the abundance of thin-walled cells in stem cell wall, suggesting that OsCNGC10 was associated with the composition of stem cell wall and negatively regulated lodging resistance in rice. T2 generation field experiment indicated that compared with the wild type, oscngc10-2 significantly increased plant height, the effective panicle length, panicle number, seed setting rate, 1000-grain weight, and yield per plant. The results of drought stress at seedling stage showed that malondialdehyde (MDA) content accumulated rapidly in OsCNGC10 defective plants under drought stress and insufficient free proline (Pro) was formed, while the free Pro content in OsCNGC10 plants was significantly increased. Moreover, the MDA accumulation rate was relatively slow, which preliminarily indicated that OsCNGC10 positively regulated the drought resistance at seedling stage. The results of this study indicated that OsCNGC10 might have a potential function in lodging resistance and drought resistance in rice, which providing a theoretical basis and new germplasm resources for the breeding lodging resistance and high yield of new rice varieties.

Key words: rice, OsCNGC10, lodging resistance, drought tolerance, cell wall

Table 1

Nucleotide sequence and corresponding primer sequences used in this study"

名称Primer name 序列Primer sequence (5'-3') 用途Usage
OsCNGC10-F ATGTTTGGGGCGGGGAAGGTGGACG 基因扩增
OsCNGC10-R TTACTCACAGGGTTCAGCTGAAAAAT Gene amplification
OsCNGC10-Flag-F GAACGATAGCCGGTACCATGTTTGGGGCGGGGAAGGT 带载体接头的基因扩增引物
OsCNGC10-Flag-R CTTTGTAATCGGATCCCTCACAGGGTTCAGCTGAAA Primers for gene amplification with vector connectors
L5AD5-F CAGATGATCCGTGGCAACaaagcaccagtggtctag 获得串联结构
L5AD5-R TTTCTAGCTCTAAAACaaaaaaaaaagcaccgactcg Obtaining a tandem structure
OsCNGC10-sgRNA1-F TCAAGAGGCAGAGAACCGTGgttttagagctagaaata 获得串联结构
OsCNGC10-sgRNA1-R CACGGTTCTCTGCCTCTTGAtgcaccagccgggaat Obtaining a tandem structure
OsCNGC10-sgRNA2-F CACGGTTCTCTGCCTCTTGAtgcaccagccgggaat 获得串联结构
OsCNGC10-sgRNA2-R CGCAATTTCCTTTGGATCCGtgcaccagccgggaat Obtaining a tandem structure
S5AD5-F CAGATGATCCGTGGCAACaaag 获得串联结构
S5AD5-R TTTCTAGCTCTAAAACaaaa Obtaining a tandem structure
OsCNGC10-target1-F GCGGTGTGGTTGACGAGTTC 靶点1序列
OsCNGC10-target1-R GCCAAATCACTCGCAGGTCG Sequence of target site 1
OsCNGC10-target2-F ATTGGGACAGACAGGCATTT 靶点2序列
OsCNGC10-target2-R GTCCTTAGTGTGGTCTGGGC Sequence of target site 2
Hyg-F ACGGTGTCGTCCATCACAGTTTGCC 转基因植株阳性鉴定
Hyg-R TTCCGGAAGTGCTTGACATTGGGG Identification of the positive transgenic plan
OsCNGC10-RT-F TACCACCACTGAGAACGATGT OsCNCG10表达量分析
OsCNGC10-RT-R TACCACCACTGAGAACGATGT Relative expression analysis of OsCNGC10

Fig. 1

PCR assay of OsCNGC10 overexpression vector colonies M: Trans 2K; 1-8: the colony PCR fragments."

Fig. 2

PCR assay of OsCNGC10 knockout terminal vector colonies M: Trans 2K; 1-8: the colony PCR fragments."

Fig. 3

Positive identification of transgenic plants in T0 generation (A): positive identification of transgenic plants; (B): the expression analysis of the overexpression lines; (C): target decoding analysis in knockout lines. M: Trans 2K; N: the negative control."

Fig. 4

Transgenic plants and wild type (WT) plant types (A): transgenic materials and field phenotypes of wild type at heading stage; (B): transgenic materials and wild type phenotypes at field maturity stage; (C): transgenic materials and single plant phenotypes of wild type at heading stages; (D): transgenic materials and single plant phenotypes of wild type at maturity stage."

Fig. 5

Basal internode morphology of transgenic plants and wild type (WT)"

Table 2

Strength analysis of transgenic plants and wild-type stems"

性状
Characteristics
野生型日本晴
Wild type
突变体
Mutant oscngc10-2
超表达
Overexpression CNCG10-6
基部节间距Basal segmental spacing (cm) 9.51±1.36 4.88±0.88** 8.91±1.22
外茎 Outer stem (mm) 3.57±0.45 5.79±0.68* 3.25±0.12
内径 Inner diameter (mm) 2.34±0.45 3.89±0.68* 2.19±0.12
壁厚Thickness of wall (mm) 1.23±0.21 1.90±0.40* 1.24±0.13
茎秆强度Strength of stem (N) 8.13±1.18 24.97±8.02** 9.08±3.04

Fig. 6

Observation of transgenic plants and wild-type (WT) tissue sections CWT: cell wall thickness; SWT: straw wall thickness."

Fig. 7

Analysis of main components of cell wall of transgenic plants and wild type (WT) *: the correlation is significant at the 0.05 probability level. "

Table 3

Agronomic traits of transgenic plants and wild types"

性状
Characteristics
野生型日本晴
Wild type
突变体
Mutant oscngc10-2
超表达
Overexpression CNCG10-6
生育期Growth period (d) 130 137 121
株高Plant height (cm) 73.23±2.91 90.97±3.22** 63.73±2.83
穗长Panicle length (cm) 15.16±1.43 18.35±2.25* 13.10±1.23
分蘖数Tiller number per plant 32.67±2.52 33.00±2.65 50.00±3.50**
每穗粒数Number of grain per panicle 105.00±4.99 237.00±8.85** 60.00±2.25
一次枝梗数Primary branch number per panicle 8.00±0.41 18.00±0.97* 8.00±0.39
二次枝梗数Secondary branch number per panicle 8.00±0.51 29.00±1.33* 3.00±0.12
千粒重Thousand-seed weight (g) 19.50±0.65 22.50±0.98* 15.10±0.56
理论产量Theoretical yield (t hm-2) 10.80±0.23 12.20±0.35* 6.90±0.11*
结实率Seed fertility (%) 86.50±0.68 93.80±1.90* 80.20±1.30

Fig. 8

Phenotype and survival rate of transgenic plants and wild type (WT) under drought stress for 15 days at seedling stage *: the correlation is significant at the 0.05 probability level. Bar: 20 cm."

Fig. 9

Proline and MDA contents of transgenic plants and wild type (WT) after 15 d drought stress at seedling stage A: proline content in the leaves of the plants; B: MDA content in the leaves of the plants. **: the correlation is significant at the 0.01 probability level; *: the correlation is significant at the 0.05 probability level. "

[1] 国家统计局关于2022年粮食产量数据的公告. 中国信息报, (2022-12-13) (001).
Announcement of the National Bureau of Satistics on Grain Production Data for 2022. China Information News, (2022-12-13) (001).
[2] Lang Y Z, Yang X D, Wang M E, Zhu Q S. Effects of lodging at different filling stages on rice yield and grain quality. Rice Sci, 2012, 19: 315-319.
doi: 10.1016/S1672-6308(12)60056-0
[3] Chin K, Moeder W, Yoshioka K. Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don't know about this 20 member ion channel family. Botany, 2009, 87: 668-677.
doi: 10.1139/B08-147
[4] Ma W, Qi Z, Smigel A, Walker R K, Verma R, Berkowitz G A. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA, 2009, 106: 20995-21000.
doi: 10.1073/pnas.0905831106 pmid: 19933332
[5] Schuurink R C, Shartzer S F, Fath A, Jones R L. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA, 1998, 95: 1944-1949.
pmid: 9465122
[6] Arazi T, Sunkar R, Kaplan B, Fromm H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J, 1999, 20: 171-182.
doi: 10.1046/j.1365-313x.1999.00588.x pmid: 10571877
[7] Talke I N, Blaudez D, Maathuis F J, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8(6): 286-293.
pmid: 12818663
[8] Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett, 2007, 581: 2237-2246.
pmid: 17321525
[9] Yuan Q, Ou-Yang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell C R. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res, 2003, 31: 229-233.
pmid: 12519988
[10] Ma W, Ali R, Berkowitz A G. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem, 2006, 44: 494-505
doi: 10.1016/j.plaphy.2006.08.007
[11] 朱天全. 拟南芥CNGC2CNGC4基因在耐热和抗病中的功能研究. 南京农业大学硕士学位论文, 江苏南京, 2020.
Zhu T Q. Functional Studies of Arabidopsis CNGC2 and CNGC4 Genes in Heat Tolerance and Disease Resistance. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract).
[12] Tan Y Q, Yang Y, Zhang A, Gu L L, Sun S J, Xu W, Wang L, Liu H, Wang Y F. Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Commun, 2019, 1: 100001.
doi: 10.1016/j.xplc.2019.100001
[13] Jin Y, Jing W, Zhang Q, Zhang W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. J Plant Res, 2015, 128: 211-220.
doi: 10.1007/s10265-014-0679-2
[14] Meral T O, Claudia R, Elizabeth B, Stephanie R, Amanda M, Sabine F, Candace T M, Rosager P L, Rui M, Jeffrey F H, Wu K Q. Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One, 2013, 8: e55277.
doi: 10.1371/journal.pone.0055277
[15] Tunc-Ozdemir M, Tang C, Ishka M R, Brown E, Groves N R, Myers C T, Rato C, Poulsen L R, McDowell S, Miller G, Mittler R, Jeffrey F H. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol, 2013, 161: 1010-1020.
doi: 10.1104/pp.112.206888 pmid: 23370720
[16] 周棋, 胡琴, 杜雪竹, 巫燕飞, 盛锋. 水稻CNGCs家族的鉴定及非生物胁迫诱导表达模式分析. 分子植物育种, 2023, 21: 6625-6637.
Zhou Q, Hu Q, Du X Z, Wu Y F, Sheng F. Genome wide identification and expression analysis of CNGCs gene family in response to abiotoc stresses in rice. Mol Plant Breed, 2023, 21: 6625-6637 (in Chinese with English abstract).
[17] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991, 74: 3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2 pmid: 1660498
[18] Xie K B, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849
[19] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻茎秆抗倒支撑特征的差异研究. 中国水稻科学, 2015, 29: 273-281.
doi: 10.3969/j.issn.1001G7216.2015.03.006
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Differences in stem resistance to topside support between indica and japonica super rice. Chin J Rice Sci, 2015, 29: 273-281 (in Chinese with English abstract).
[20] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻F优498机械化种植的茎秆理化性状与抗倒伏性. 中国水稻科学, 2014, 28: 612-620.
Lei X L, Liu L, Liu B, Huang G Z, Ma R C, Ren W J. Physicochemical properties and lodging resistance of stem in mechanized planting of hybrid indica rice F You 498. Chin J Rice Sci, 2014, 28: 612-620 (in Chinese with English abstract).
[21] Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Takarada T, Yano M, Yamamoto T, Fukuoka S, Wu J, Ando T, Ordonio R L, Hirano K, Matsuoka M. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant, 2015, 8: 303-304.
doi: 10.1016/j.molp.2014.10.009 pmid: 25616386
[22] 张云辉, 张所兵, 林静, 汪迎节, 方先文. 水稻株高基因克隆及功能分析的研究进展. 中国农学通报, 2014, 30(12): 1-7.
Zhang Y H, Zhang S B, Lin J, Wang Y J, Fang X W. Research progress on cloning and functional analysis of plant height genes in rice (Oryza sativa L.). Chin Agric Sci Bull. 2014, 30(12): 1-7 (in Chinese with English abstract).
[23] 万宜珍, 马国辉. 超级杂交稻抗倒生理与形态机能研究: II.培矮64S/E32与汕优63茎秆抗倒力学差异. 湖南农业大学学报(自然科学版), 2003, (2): 92-94.
Wan Y Z, Ma G H. Studies on the Physiological and Morphological Functions of Super Hybrid Rice in Resistance to overpour: II. Differences in stem resistance to overpour between Peiai 64S/ E3 2 and Shanyou 63. J Hunan Agric Univ (Nat Sci Edn), 2003, (2): 92-94 (in Chinese with English abstract).
[24] 钟代彬, 罗利军, 梅捍卫, 王一平, 余新桥, 应存山, 黎志康, 郭龙彪. 水稻主茎总叶数及其相关性状的QTL分析. 中国水稻科学, 2001, 15: 8-13.
Zhong D B, Luo L J, Mei H W, Wang Y P, Y u X Q, Ying C S, Li Z K, Guo L B. QTL analysis of total leaf number and related traits in the main stem of rice. Chin J Rice Sci, 2001, 15: 8-13 (in Chinese with English abstract).
[25] 饶玉春, 李跃, 董国军, 曾大力, 钱前. 水稻抗倒伏研究进展. 中国稻米, 2009, (6): 15-19.
Rao Y C, Li Y, Dong G J. Zeng D L, Qian Q. Lodging resistance of rice research progress. Chin Rice, 2009, (6): 15-19 (in Chinese with English abstract).
[26] Kothari K S, Dansana P K, Giri J, Tyagi A K. Rice Stress Associated Protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front Plant Sci, 2016, 7: 1057.
doi: 10.3389/fpls.2016.01057 pmid: 27486471
[27] Lee S C, Lee M Y, Kim S J, Jun S H, An G, Kim S R. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells, 2005, 19: 212-218.
doi: 10.1016/S1016-8478(23)13158-X
[28] 段俊枝, 杨翠萍, 王楠, 齐学礼, 冯丽丽, 燕照玲, 齐红志, 陈海燕, 张会芳, 卓文飞, 李莹. 利用基因工程技术提高非生物胁迫下水稻产量的研究进展. 中国稻米, 2023, 29(3): 15-23.
doi: 10.3969/j.issn.1006-8082.2023.03.003
Duan J Z, Yang C P, Wang N, Qi X L, Feng L L, Yan Z L, Qi H Z, Chen H Y, Zhang H F, Zhuo W F, Li Y. Progress on improving rice yield under abiotic stress by genetic engineering. Chin Rice, 2023, 29(3): 15-23 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2023.03.003
[29] Hu H, You J, Fang Y, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2010, 72: 567-568.
doi: 10.1007/s11103-010-9598-3
[30] Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 2010, 232: 765-774.
doi: 10.1007/s00425-010-1208-8 pmid: 20574667
[31] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应. 作物学报, 2023, 49: 365-376.
doi: 10.3724/SP.J.1006.2023.12076
Li Z W, Mo Z Y, Sun C Y, Shi Y, Shang P, Lin W W, Fan K, Lin W X. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress. Acta Agron Sin, 2023, 49: 365-376 (in Chinese with English abstract).
[32] Wu W Y, Tang W S, Wang C X, Ge L H, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci, 2020, 11: 785.
doi: 10.3389/fpls.2020.00785 pmid: 32625221
[33] 杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28(5): 65-72.
Yang J C, Wang Z Q, Zhu Q S, Study on drought resistance and physiological characteristics of rice varieties. Sci Agric Sin, 1995, 28(5): 65-72 (in Chinese with English abstract).
[34] Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. J Am Soc Hortic Sci, 2011, 136: 247-255.
[1] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[2] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[3] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[4] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[5] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[6] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[7] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[8] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[9] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[10] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[11] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[12] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[13] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[14] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[15] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!