Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1104-1114.doi: 10.3724/SP.J.1006.2024.32043

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice

WAN Ying-Chun1**(), BAN Yi-Jie1**(), JIANG Yu-Dong2**(), WANG Ya-Xin1, LIU Jing-Jing1, LIU Xiao-Qing1, CHENG Yu-Lin1, WANG Nan1,*(), FENG Ping1,*()   

  1. 1Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
    2Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Luzhou Branch of National Rice Improvement Center, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences (Deyang Branch of Sichuan Academy of Agricultural Sciences), Deyang 618000, Sichuan, China
  • Received:2023-10-17 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-08
  • Contact: E-mail: 554180353@qq.com; E-mail: wangnan_xndx@126.com E-mail:wanyc1221@126.com;2263889500@qq.com;289482100@qq.com;wangnan_xndx@126.com;554180353@qq.com
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Chongqing Graduate Research and Innovation Project(CYS22224);Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIAD-KPX0014)

Abstract:

Male sterile material is the key to hybrid rice breeding. In this study, a male sterile mutant tpa1 was screened by ethyl methane sulfonate (EMS) mutagenesis of excellent indica cultivar Xinong 1B. There was no difference between tpa1 and wild type at vegetative growth stage. At reproductive stage, male gametes were sterile and female gametes developed normally. Phenotypic observation showed that the pollen of tpa1 was completely broken and disappeared, the stratum corneum of the outer wall of the anther was abnormal, the Ubisch body of the inner wall of the anther was abnormal, the callose synthesis was abnormal, the tapetum apoptosis was abnormal, and the outer wall of the pollen was missing bacula layer. Genetic analysis showed that the mutant trait was controlled by a pair of recessive nuclear genes. A genetic population was constructed using the tpa1 mutant and Jinhui 10. Finally, TPA1 gene was located between the markers N9 and N11 on chromosome 4, with a physical distance of 74 kb. There were 15 predicted genes in this interval. Resequencing identified that only a single base substitution occurred in the exon of LOC_Os04g53380, leading to an early termination of translation. Subsequent sequencing of the wild-type and mutant tpa1 confirmed this mutation, thus identified the gene as a candidate gene for TPA1, indicating that TPA1 was a new male sterile gene. This study will lay a foundation for the functional study of TPA1 gene.

Key words: rice (Oryza sativa L.), male recessive nuclear infertility, tpa1, fine mapping

Table 1

Primers used in this study"

用途
Usage
引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5′-3′)
Fine mapping R1 ATCCATCCTTCAGGCTTCG CCTGTGGTGTCCTAAATCCC
R2 TGCCATCATACAAGCGATTTT ATCAGCGTTAGGGTTCGGT
R3 AGGCTGGGAGATCAATGTCTT CATGCTCAAAAACTGAGCTACTG
R4 CACCGATCCTCCCACAAGT CTCTTTGAATCTGTTGTTATGCC
R5 GGGATGCAGTGTGAACTTATTC CTTTTGTGAAAAAATGGGAGG
R6 CGTTACCAGGTTGCTCTTGG CATAGCGCTTGGCCTGTTAC
R7 CTCTCTTCCACGTATGCTTATAGC CATAGTTGCATCCAACGAGC
R8 GAGATTATCCTGCGGTCTTAATC TTGATGATACGATGACCAAGTTC
R9 CACCGATCCTCCCACAAGT CTCTTTGAATCTGTTGTTATGCC
R10 GCAATCTTGTGACCTAATCTTAGTAC GACCATCTAATCAGTACTTCCTCC
N8 TCAGATCCGACCTTTGCGAC CTTTCCTCCTTCCTACCGTA
N9 TAGGTTTAAAATATTCATCT TGATTGCGTGCTGCCGTGCT
N10 AAGGTTGTCCCCTGGTAAAC TGAAGACAGCATCCGTTGGA
N11 GTACTACGGCGGCTAAACGC ACTTCTGGGTTTTTGACTCG
TPA1-check CAATTCTAGGTCTAACATGCGC ATTGCCATTGGGCTCTGGGA
RT-qPCR Actin GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
TPA1 CATATCCCTAGCAGCGGACA GCTCGAGTGCACATATTGGG
TDR TGGAGGTGGCACCAGTTTGGATGCT CTGTGCTTCAAGCTCACTGCTGCA
EAT1 CAGAGGAGGTCAAAGGAATG TCCAATCCTGGTCAAATAAG
OsAP37 CGACGCGAACAGGTACGGAAT GCGGCAGCCGGATCTCCA
OsAP25 AGGACGCCATCCCGAACTA AGCGAGCCGGAGAAGTAGTA
OsCYP703B2 TGTTGTCCTCTCATGGATCTTGG GGTAATTGGTGAAGTTGGTCTTCA
PTC2 TTCCATTGGAGGACATGATGAT AACAAATTAAGTAGCAGCAGCATA
TIP2 AAGGAGGATAGAGCGACGGT GATGTTCACGTCGTCCTCCA
WDA1 CCTACTATACCTCGGCGCAC ATGTGATGGGCTCAGTGACG

Fig. 1

Fertility and SEM observation of wild-type Xinong 1B and mutant tpa1 A, B: plants of wild type and mutant tpa1; C, D: spikelet of wild type and mutant tpa1; E: pollen iodine staining of wild type; F: spikelet of wild type; G: spikelet of mutant tpa1; H: pollen iodine staining of mutant tpa1; I-P: SEM observation; I, J: anthers of wild type and mutant tpa1; K: outer wall of wild type anther; L: inner wall of wild type anther; M: wild type anthers peeled out pollen; N: anther outer wall of mutant tpa1; O: the inner wall of anther of mutant tpa1; P: the anther of mutant tpa1 peeled and exposed pollen. Bar: 10 cm (A, B), 1 mm (C, F), 0.5 mm (D, G), 0.1 mm (E, H), 100 μm (I, J), 10 μm (K-P)."

Fig. 2

Semi-thin section and TEM observation of wild type and mutant tpa1 A-E: section-thin sections of wild type anthers from st8b-st12; F-J: section-thin sections of tpa1 anthers from st8b-st12; K-M: TEM of wild type st10 anther ultra-thin sections; N-P: TEM of tpa1 st10 anther ultra-thin sections. Ba: bacula; BP: binuclear pollen; dMsp: abnormal microspore mother cells; Dy: dyad cells; E: epidermis; En: endothelium; ML: middle layer; MP: mature pollen; Msp: microspore mother cells; N: nucleus; Ne: nexine; Nm: nuclear membrane; T: tapetum; Tds: tetrad; Ub: Ubisch body. Bar: 200 μm (A-J); 2 μm (K, N); 1 μm (L, O); 0.5 μm (M, P)."

Fig. 3

Callose staining of wild type and mutant tpa1 A-D: callose staining of wild type anthers from stages st7 to st9; E-H: callose staining of mutant tpa1 anthers from stages st7 to st9. Bar: 200 μm (A-H)."

Table 2

Genetic analysis of mutant tpa1"

群体
Population
总株数
Total plant number
可育植株
Fertile plants
不育植株
Sterile plans
期望分离比
Segregation ratio
P
P-value
χ2 3:1
(JH10×tpa1) F2 1624 1202 422 3∶1 0.52 0.41

Table 3

Fine mapping interval predicted genes"

序号
Serial number
基因编号
Gene number
基因功能注释
Gene function annotation
Gene1 LOC_Os04g53310 OsSSIIIb Soluble starch synthase III
Gene2 LOC_Os04g53320 The expressed protein
Gene3 LOC_Os04g53330 RNA recognition motif containing protein
Gene4 LOC_Os04g53340 The expressed protein
Gene5 LOC_Os04g53350 The expressed protein
Gene6 LOC_Os04g53360 The expressed protein
Gene7 LOC_Os04g53370 The acyltransferase
Gene8 LOC_Os04g53380 The expressed protein
Gene9 LOC_Os04g53390 MBTB2-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH-related domain
Gene10 LOC_Os04g53400 MBTB6-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene11 LOC_Os04g53410 MBTB7-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene12 LOC_Os04g53420 The expressed protein
Gene13 LOC_Os04g53430 MBTB8-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene14 LOC_Os04g53440 RNA recognition motif containing protein
Gene15 LOC_Os04g53450 The expressed protein

Fig. 4

Fine mapping of TPA1 A: preliminary positioning and fine positioning of tpa1; B: the resequencing results of wild type and mutant tpa1; C: wild type and mutant tpa1 mutation site sequencing results."

Fig. 5

RT-qPCR analysis A: the relative expression level of TPA1 genes in different parts of heading stage and spikelets of st6-st12 in wild-type rice; B: the relative expression level of tapetum development-related genes in wild type and mutant tpa1 at st6-st9 stage."

[1] Hochholdinger F, Baldauf J A. Heterosis in plants. Curr Biol, 2018, 28: R1089-R1092.
doi: 10.1016/j.cub.2018.06.041
[2] Bhatt A M, Canales C, Dickinson H G. Plant meiosis: the means to 1N. Trends Plant Sci, 2001, 6(3): 114-121.
doi: 10.1016/s1360-1385(00)01861-6 pmid: 11239610
[3] 胡骏, 黄文超, 朱仁山, 李绍清, 朱英国. 水稻雄性不育与杂种优势的利用. 武汉大学学报(理学版), 2013, 59(1): 1-9.
Hu J, Huang W C, Zhu R S, Li S Q, Zhu Y G. Male sterility and utilization of heterosis in rice. J Wuhan Univ (Sci Edn), 2013, 59(1): 1-9 (in Chinese with English abstract).
[4] Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci, 2021, 12: 629314.
doi: 10.3389/fpls.2021.629314
[5] Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525.
doi: 10.1104/pp.104.041459
[6] Tariq N, Yaseen M, Xu D, Rehman H M, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. Plant Biol, 2022, 25: 233-245.
doi: 10.1111/plb.v25.2
[7] 张秋云, 沈亚琦, 蒋文翔, 刘家林, 王联红, 贺浩华, 胡丽芳. 水稻绒毡层发育相关转录因子研究进展. 湖北农业科学, 2021, 60(19): 5-10.
Zhang Q Y, Shen Y Q, Jiang W X, Liu J L, Wang L H, He H H, Hu L F. Research progress on transcription factors related to rice tapetum development. Hubei Agric Sci, 2021, 60(19): 5-10 (in Chinese with English abstract).
[8] Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011, 23: 515-533.
doi: 10.1105/tpc.110.074369
[9] Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 2010, 61: 767-781.
doi: 10.1111/tpj.2010.61.issue-5
[10] Jiang D, Li J, Wu, P, Liu Z L, Zhuang C X. Isolation and characterization of a microsporocyte-specific gene, OsMSP, in rice. Plant Mol Biol Rep, 2009, 27: 469-475.
doi: 10.1007/s11105-009-0109-0
[11] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453
[12] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[13] Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 pmid: 21515697
[14] Niu N, Liang W, Yang X, Jin W, Wilson Z A, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396 pmid: 23385589
[15] Liu Z, Bao W, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol, 2010, 52: 670-678.
doi: 10.1111/jipb.2010.52.issue-7
[16] Wang N, Deng Y, Zhang L S, Wan Y C, Lei T, Yang Y M, Wu C, Du H, Feng P, Yin W Z, He G H. UDP-glucose epimerase 1, moonlighting as a transcriptional activator, is essential for tapetum degradation and male fertility in rice. Mol Plant, 2023, 16: 829-848.
doi: 10.1016/j.molp.2023.03.008
[17] Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287
[18] Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. J Plant Physiol, 2021, 260: 153388.
doi: 10.1016/j.jplph.2021.153388
[19] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[20] Shi J, Tan H, Yu X H, Liu Y, Liang W, Ranathunge K, Franke R B, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[21] Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood J L, Scheller H V, Hu J, Zhang D, Liang W. Defective pollen wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol, 2017, 173: 240-255.
doi: 10.1104/pp.16.00095 pmid: 27246096
[22] Mondol P C, Xu D, Duan L, Shi J, Wang C, Chen X, Chen M, Hu J, Liang W, Zhang D. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol, 2020, 225: 807-822.
doi: 10.1111/nph.16161 pmid: 31486533
[23] Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[25] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genet Genomics, 1996, 252: 597-607.
[26] Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant Cell Physiol, 2015, 56: 497-509.
doi: 10.1093/pcp/pcu193 pmid: 25520407
[27] Wei S, Ma L. Comprehensive insight into tapetum-mediated pollen development in Arabidopsis thaliana. Cells, 2023, 12: 247.
doi: 10.3390/cells12020247
[28] Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav, 2010, 5: 1121-1123.
doi: 10.4161/psb.5.9.12562 pmid: 20930527
[29] Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287
[30] Rosado I V, de la Cruz J. Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA, 2004, 10: 1073-1083.
pmid: 15208443
[31] He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics, 2017, 44: 567-576.
doi: S1673-8527(17)30198-4 pmid: 29246861
[32] Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li W X, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233-1246.
doi: 10.1111/nph.15057 pmid: 29479724
[33] Shan L, Xu G, Yao R W, Luan P F, Huang Y, Zhang P H, Pan Y H, Zhang L, Gao X, Li Y, Cao S M, Gao S X, Yang Z H, Li S, Yang LZ, Wang Y, Wong C C L, Yu L, Li J, Yang L, Chen L L. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature, 2023, 615: 526-534.
doi: 10.1038/s41586-023-05767-5
[34] Zhou K, Zhang C, Xia J, Yun P, Wang Y, Ma T, Li Z. Albino seedling lethality 4; chloroplast 30S ribosomal protein S1 is required for chloroplast ribosome biogenesis and early chloroplast development in rice. Rice, 2021, 14: 47.
doi: 10.1186/s12284-021-00491-y pmid: 34046768
[35] Yan H, Chen D, Wang Y, Sun Y, Zhao J, Sun M, Peng X. Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep, 2016, 6: 31195.
doi: 10.1038/srep31195
[36] Uzair M, Long H, Zafar S A, Patil S B, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. Plant Physiol, 2021, 186: 497-518.
doi: 10.1093/plphys/kiab075 pmid: 33591317
[37] Li K, Wang P, Ding T, Hou L, Li G, Zhao C, Zhao S, Wang X, Li P. Mutation of an essential 60S ribosome assembly factor MIDASIN 1 induces early flowering in Arabidopsis. Int J Mol Sci, 2022, 23: 6509.
doi: 10.3390/ijms23126509
[38] Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020, 182: 962-976.
doi: 10.1104/pp.19.00688 pmid: 31772077
[1] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[2] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[3] YANG Ye, SUN Qi, XING Xin-Xin, ZHANG Hai-Tao, ZHAO Zhi-Chao, CHENG Zhi-Jun. Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 597-607.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, LI Si-Yu, WANG Sen, WEI Wan-Rong. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice [J]. Acta Agronomica Sinica, 2023, 49(11): 3029-3041.
[5] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[6] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[7] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[8] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[9] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[10] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[11] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[12] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[13] TIAN Biao, DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu. Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1863-1873.
[14] ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912.
[15] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!