Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3029-3041.doi: 10.3724/SP.J.1006.2023.22061

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice

ZHOU Wen-Qi1,2(), QIANG Xiao-Xia3, LI Si-Yu1, WANG Sen4, WEI Wan-Rong1,*()   

  1. 1Key Laboratory of Southwest China Wildlife Resources Conservation / College of Life Sciences, China West Normal University, Nanchong 637000, Sichuan, China
    2Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    3Lanzhou No. 4 High School, Lanzhou 730050, Gansu, China
    4Shaanxi Province Animal Husbandry Industry Experimental Demonstration Center, Xianyang 713702, Shaanxi, China
  • Received:2022-10-28 Accepted:2023-05-24 Online:2023-11-12 Published:2023-06-15
  • Supported by:
    Young Scientific and Technological Talents Support Project of Gansu Association for Science and Technology in 2020

Abstract:

Good leaf morphology is one of the factors for ensuring crop yield. A certain degree of curling can keep rice leaves standing and not drooping, which is beneficial to improve the light area of the population, enabling it to receive more light energy and improve the photosynthetic efficiency. In this study, the mature seeds of ZH11 in rice were mutated by EMS, and a mutant named e202 with curly and straight leaves was screened from M2 progeny. Phenotypic identification showed that e202 exhibited a variety of defective phenotypes. Compared with the wild type Zhonghua 11 (ZH11), the length and number of adventitious roots were decreased, and the panicle development was abnormal. The morphology of floret, anther, and pollen was deformed, the fertility was significantly reduced, the chlorophyll content was significantly increased, and the stomatal density was decreased. The structure of the leaves was observed by resin sectioning. Compared with the control, the number of vesicular cells increased and the volume decreased, resulting in leaf curling. Meanwhile, the anthers were sliced and observed. Normal pollen could not be formed in e202 or only very few pollen grains were formed, resulting in reduced fertility. The candidate genes were located in the physical region of 440 kb on chromosome 10 by map-based cloning. Gene sequencing analysis within the interval revealed that one base G was missing in the 1935 position of the fourth exon of Os10g0562700 (LOC_Os10g41310) gene, which resulted in the subsequent amino acid confusion. Protein translation is terminated prematurely, and e202 is a novel allelic mutant of REL2. This study provides a theoretical basis for revealing the involvement of REL2 in leaf rolling and flower development in rice.

Key words: rice, rolled-leaf, drought resistance, flower development, fine mapping

Table 1

Part of the primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Use
e202-F ATGGGGTGCACGGCGTCGAAGG 基因克隆Gene cloning
e202-R CTACCGCACCGATCCAGCTCGCCT
InDel-1F TTATGTCAACCTTACAATT 基因定位Fine mapping
InDel-1R GCATACTGTATTCCTATATC
InDel-2F TTGCTTAGTGGTAAGCTATG
InDel-2R GGAGTTCTTGAAGAAACTCC
InDel-3F GTATGTTTGTGGAGTAATAT
InDel-3R CATGCAATGTGCCAAGAACC
InDel-4F GCATACGAATGTACTTGTGT
InDel-4R TGGAAGTATGCGTGGAATAT
InDel-5F CTCAAATCACTTATATTATG
InDel-5R GTGTAACCAGTAGAAGAATG
InDel-6F TGTATAATTTGTTGAGATGAG
InDel-6R GTAGATCTTGTGATATTGGAG
C10-1-F GATTCACGGGTCGATCTACT 基因定位Fine mapping
C10-1-R GTGTGGTGCCATGCCTAATG
C10-22-F CAAGTATAATAATACTTAGAG
C10-22-R GAGCAAGGCTAATAATACATC
C10-38-F GTTGAAGTGCTACAGGTATG
C10-38-R GCTTCCTCAGCCTTGATCTC
C10-45-F GTATTCGCACTCTCAAATGAG
C10-45-R CAAATTAAGTCACAGATAAGTG
C10-57-F CAAGAATTCTAAGAGCTCG
C10-57-R CGAGCTTATGCATAAGCTTTG
C10-72-F TAGGAGGAGCAGAAGGAATAG
C10-72-R CGATCGATCGTCTTCTTCCAC
TUB-F TTTCACTCTTGGTGTGAAGCAGAT 实时荧光定量PCR技术RT-PCR
TUB-R GACTTCCTTCACGATTTCATCGTAA
REL2-F TGATCATCGTGACTTCACAGGC 实时荧光定量PCR技术RT-PCR
REL2-R TCTACCAGACCACGGACTTGC

Fig. 1

Phenotypic analysis of e202 and ZH11 plants A: at the early growth stage, e202 was shorter than ZH11, and leaves were curled. B: the height of e202 was the same as that of the control at anthesis stage. C: the angle between stem and leaf of ZH11 seedlings was relatively larger; D: the angle between stem and leaf of e202 was smaller than that of ZH11. E: at seedling stage, the root of e202 was underdeveloped, and the length and number of adventitious roots was decreased. F: left: ZH11 blade, middle: e202 micro-coil blade, right: e202 was reeled blade; G: F2 generation, dwarfed by e202, leaf rolling. A, B, G: bar, 10 cm; C, D, E, F: bar, 1 cm."

Fig. 2

Mutant phenotype of e202 rice panicle A, E: ZH11 complete spike flower structure; B-D, F-L: e202; A: spikelet structure of ZH11 toggle lemma and palea; B-D: e202 glume was removed, and the number of lemma and palea increased; F-H: the multiple aberrant phenotypes of e202 rice husk; I-L: the aberrant structures of e202 deleted stamens and pistils, marked by asterisks. Bar: 0.1 cm."

Fig. 3

Mutant phenotypes of some flowers and pollen of e202 A, I: ZH11; B-H, J-L: e202; A: anatomical diagram of flowers of the ZH11 lemma and palea; B-D: e202, 2 pistils; E-H: distorted structure of stamens, stigma and paddles of e202; I: anther structure of ZH11; J-L: the distorted structure of e202 pollen, the different morphology of e202 anthers, and the decreased fertility. A-H: bar, 0.05 cm; I-L: bar, 0.01 cm."

Fig. 4

The number of various flower organs A: stamens; B: pistil; C: stigma; D: blades; E: lemma; F: palea. The control group were 50 flowers, and the e202 were 150 flowers. n = 50/150."

Fig. 5

Pollen staining and transection of anthers in ZH11 and e202 A: ZH11 flowering; B: e202 was unable to bloom, and the glume did not open at the pollinating stage; C: the anthers and pollen grains of ZH11; D: the anthers and pollen of e202, a small amount of pollen: E: ZH11 ripe and full seeds; F: most of the e202 seeds obtained were shrivelled and empty; G, H: pollen of ZH11 and e202 stained with 0.1% iodide and potassium iodide; e202 pollen could be stained very little; I-J: ZH11 anther cross section, K-L: anther cross section of e202. There were almost no plump pollen grains in e202. A-D: bar, 1 cm; E-H: bar, 100 μm."

Fig. 6

Transverse sections of e202 and ZH11 blades A-C: ZH11; D-F: e202. A, D: the large vascular bundle structures in the flag leaf, arrows indicate parenchyma cells. The small triangle represents the absence or reduction of the sclerenchyma cell layer in e202. B, E: the small vascular bundle structure in the flag leaf, and arrow represents vascular bundle; C, F: vesicular cells, compared with the control, the number of cells in e202 increased and the volume decreased."

Fig. 7

Measurement of chlorophyll content in ZH11 and e202 leaves * indicates significant difference compared with the control at P < 0.05; ** indicates extremely significant difference compared with the control at P < 0.01."

Table 2

Genetic separation ratio test between normal and roll leaf plants in F2 population"

群体
Population
总株数
Total plant number
正常表型
Normal phenotype
矮化表型
Dwarfing phenotype
期望分离比
Segregation ratio
P
P-value
χ2
(ZH11×e202) F2 560 433 127 3﹕1 0.21 1.731

Fig. 8

Preliminary mapping and fine mapping of the candidate genes A: the genetic map of the candidate gene by preliminary mapping and fine mapping; B: the structure of the candidate gene; C: the relative expression of REL2 gene in ZH11 and e202. ‘n’ refers to the number of F2 mutants used for mapping."

[1] 邓秋雨, 肖应辉. 水稻卷叶类型及调控机制研究进展. 作物研究, 2021, 35: 376-384.
Deng Q Y, Xiao Y H. Research progress on types and regulation mechanism of rice rolled leaf. Crop Res, 2021, 35: 376-384 (in Chinese with English abstract).
[2] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
doi: 10.1105/tpc.108.061457
[3] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009, 7: 852-860.
Shen N W, Qian Q, Zhang G H. Research progress on rice rolled leaf and its application in breeding program. Mol Plant Breed, 2009, 7: 852-860 (in Chinese with English abstract).
[4] 黄州, 杜志喧, 王建平, 李剑镔, 鲍建中, 任伟芳, 傅军如. 水稻卷叶性状与分子调控机制研究进展. 分子植物育种, 2021, 19: 7604-7611.
Huang Z, Du Z X, Wang J P, Li J B, Bao J Z, Ren W F, Fu J R. Research progress on rolled leaf traits and molecular regulation mechanism in rice (Oryza sativa). Mol Plant Breed, 2021, 19: 7604-7611 (in Chinese with English abstract).
[5] Zhang J J, Wu S Y, Jiang L, Wang J L, Zhang X, Guo X P, Wu C Y, Wan J M. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.). Plant Biol, 2015, 17: 437-438.
doi: 10.1111/plb.12255
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
doi: 10.1093/mp/ssq022
[7] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
doi: 10.1104/pp.111.176016
[8] Xiang J J, Zhang G H, Qian Q, Xue H W. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
doi: 10.1104/pp.112.199968
[9] Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C G, Wang J L, Zhang G Q, Zhang Z M. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015, 66: 6047-6058.
doi: 10.1093/jxb/erv319
[10] Yang S Q, Li W Q, Miao H, Gan J F, Qiao L, Chang Y L, Shi C H, Chen C M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
doi: 10.1186/s12284-016-0105-6
[11] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, Shi C H, Chen K M. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J, 2017, 92: 904-923.
doi: 10.1111/tpj.13728
[12] Wang H M, Shi Y F, Zhang X B, Xu X, Wu J L. Characterization of a novel rice dynamic narrow-rolled leaf mutant with deficiencies in aromatic amino acids. Int J Mol Sci., 2020, 21: 1521.
doi: 10.3390/ijms21041521
[13] 李战朋. 水稻卷叶突变体zw235的基因克隆与功能分析. 中国农业科学院硕士学位论文,北京, 2016.
Li Z P. Map-based Cloning and Function Analysis of a Rolled Leaf Mutant zw235in Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[14] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507.
doi: 10.1007/s00438-008-0328-3 pmid: 18293011
[15] Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
doi: 10.1007/s11103-007-9203-6
[16] Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292.
doi: 10.1007/s11103-010-9614-7
[17] Wu C, Fu Y P, Hu G C, Si H M, Cheng S H, Liu W Z. Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010, 232: 313-324.
doi: 10.1007/s00425-010-1180-3 pmid: 20443024
[18] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/j.1467-7652.2012.00679.x pmid: 22329407
[19] Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res, 2010, 20: 935-947.
doi: 10.1038/cr.2010.109
[20] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
doi: 10.1007/s00425-013-2009-7
[21] Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J I, Nagato Y. The ADAXIALIZED LEAF1gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354.
doi: 10.1016/j.ydbio.2009.07.042
[22] Itoh J, Hibara K, Sato Y, Nagato Y. Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol, 2008, 147: 1960-1975.
doi: 10.1104/pp.108.118679
[23] Zhang J S, Zhang H, Kumar S A, Pan Y J, Bai J J, Fang J J, Shi H Z, Zhu J K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol, 2018, 176: 2082-2094.
doi: 10.1104/pp.17.01432 pmid: 29367235
[24] 周文期, 寇思荣, 连晓荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 周玉乾. 水稻和玉米叶表皮突变体的筛选和鉴定. 植物生理学报, 2020, 56: 189-199.
Zhou W Q, Kou S R, Lian X R, Yang Y Z, Liu Z X, Wang X J, He H J, Zhou Y Q. Screening and identification of leaf epidermal mutants in rice and maize. Plant Physiol J, 2020, 56: 189-199 (in Chinese with English abstract).
doi: 10.1111/ppl.1982.56.issue-2
[25] 王峰, 徐飚, 杨正林, 凌英华, 何光华, 陈胜, 卿明敬, 桑贤春. EMS诱变水稻矮生资源的鉴定评价. 核农学报, 2011, 25: 197-201.
doi: 10.11869/hnxb.2011.02.0197
Wang F, Xu B, Yang Z L, Ling Y H, He G H, Chen S, Qing M J, Sang X C. Identification and analysis of EMS induced dwarf mutants in rice. Acta Agric Nucl Sin, 2011, 25: 197-201 (in Chinese with English abstract).
[26] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究. 作物学报, 2022, 48: 1401-1415.
doi: 10.3724/SP.J.1006.2022.12032
Zhou W Q, Qiang X X, Wang S, Jiang J W, Wei W R. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice. Acta Agron Sin, 2022, 48: 1401-1415 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12032
[27] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591-592.
doi: 10.1042/bst0110591
[28] 周文期. 调控水稻叶表皮发育的LPL2和DSP1基因克隆与功能分析. 兰州大学博士学位论文,甘肃兰州, 2015.
Zhou W Q. The Cloning and Functional Analysis of LPL2 and DSP1, two Genes, that Regulate the Epidermal Cell Development in Rice. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2015 (in Chinese with English abstract).
[29] 王艺程, 张世杰, 丁寒雪, 蒋成娣, 张浠然, 张志国, 刘翔. 甲基磺酸乙酯(EMS) 在植物诱变育种中的应用. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220719.1519.016.html.
Wang Y C, Zhang S J, Ding H X, Jiang C D, Zhang X R, Zhang Z G, Liu X. Application of Ethyl Methanesulfonate (EMS) in plant mutation breeding. Mol Plant Breed, 2022, (on line). https://kns.cnki.net/kcms/detail/46.1068.S.20220719.1519.016.html (in Chinese with English abstract).
[30] 周文期, 周玉乾, 刘忠祥, 连晓荣, 王晓娟, 何海军, 杨彦忠, 寇思荣. 12C6+重离子束辐照玉米后代的生物学效应. 核农学报, 2019, 33: 2311-2318.
doi: 10.11869/j.issn.100-8551.2019.12.2311
Zhou W Q, Zhou Y Q, Liu Z X, Lian X R, Wang X J, He H J, Yang Y Z, Kou S R. Biological effects of offspring of maize irradiated by 12C6+ heavy ion beam. Acta Agric Nucl Sin, 2019, 33: 2311-2318 (in Chinese with English abstract).
[31] 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育过程. 植物学报, 2023, DOI: 10.11983/CBB22261.
doi: 10.11983/CBB22261
Zhou W Q, Zhou Y Q, Li Y S, He H J, Yang Y Z, Wang X J, Lian X R, Liu Z X, Hu Z B. ZmICE2 regulates stomatal development in maize. Chin Bull Bot, 2023, DOI: 10.11983/CBB22261.
doi: 10.11983/CBB22261
[32] 周文期, 张贺通, 何海军, 龚佃明, 杨彦忠, 刘忠祥, 李永生, 王晓娟, 连晓荣, 周玉乾, 邱法展. 调控玉米株高和穗位高候选基因Zmdle1的定位. 中国农业科学, 2023, 56: 821-837.
doi: 10.3864/j.issn.0578-1752.2023.05.002
Zhou W Q, Zhang H T, He H J, Gong D M, Yang Y Z, Liu Z X, Li Y S, Wang X J, Lian X R, Zhou Y Q, Qiu F Z. Candidate gene localization of ZmDLE1 gene regulating plant height and ear height in maize. Sci Agric Sin, 2023, 56: 821-837 (in Chinese with English abstract).
[33] 叶俊, 吴建国, 杜婧, 郑希, 张志, 石春海. 水稻“9311”突变体筛选和突变体库构建. 作物学报, 2006, 32: 1525-1529.
Ye J, Wu J G, Du J, Zheng X, Zhang Z, Shi C H. The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 1525-1529 (in Chinese with English abstract).
[34] Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496-504.
doi: S1674-2052(17)30368-4 pmid: 29223623
[35] 周文期, 连晓荣, 周玉乾, 王兴荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 寇思荣. EMS诱变玉米自交系种质创新应用. 玉米科学, 2020, 28(6): 31-38.
Zhou W Q, Lian X R, Zhou Y Q, Wang X R, Yang Y Z, Liu Z X, Wang X J, He H J, Kou S R. Innovative application of EMS mutagenesis germplasm of maize inbred lines. J Maize Sci, 2020, 28(6): 31-38 (in Chinese with English abstract).
[36] 黄益安, 邓小娟, 万海波, 王朋, 方小龙, 张杰, 杨存义. 大豆华夏3号突变体库构建及SSR分子标记. 中国油料作物学报, 2016, 38: 159-166.
Huang Y A, Deng X J, Wan H B, Wang P, Fang X L, Zhang J, Yang C Y. Mutagenesis and SSR markers of soybean cultivar Huaxia 3. Chin J Oil Crop Sci, 2016, 38: 159-166 (in Chinese with English abstract).
[37] Shi X L, Cui F, Han X Y, He Y L, Zhao L, Zhang N, Zhang H, Zhu H D, Liu Z X, Ma B, Zheng S S, Zhang W, Liu J J, Fan X L, Si Y Q, Tian S Q, Niu J Q, Wu H L, Liu X M, Chen Z, Meng D Y, Wang X Y, Song L Q, Sun L J, Han J, Zhao H, Ji J, Wang Z G, He X Y, Li R L, Chi X B, Liang C Z, Niu B F, Xiao J, Li J M, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant, 2022, 15: 1440-1456.
doi: 10.1016/j.molp.2022.07.008
[38] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[39] 周文期, 刘忠祥, 王晓娟, 何海军, 周玉乾, 杨彦忠, 连晓荣, 李永生. 利用BSA-Seq方法快速定位作物农艺性状QTL/基因概述. 甘肃农业科技, 2022, 53(4): 1-10.
Zhou W Q, Liu Z X, Wang X J, He H J, Zhou Y Q, Yang Y Z, Lian X R, Li Y S. Rapid mapping of QTL/gene for agronomic traits in crops using BSA-seq method. Gansu Agric Sci Technol, 2022, 53(4): 1-10 (in Chinese with English abstract).
[40] 李蓓, 莫凯琴, 马银花. 水稻卷叶基因研究进展. 安徽农学通报, 2021, 27(6): 14-18.
Li B, Mo K Q, Ma Y H. Advances in gene research of rice roll leaf. Anhui Agric Sci Bull, 2021, 27(6): 14-18 (in Chinese with English abstract).
[41] Li M, Li X Z, Zhu L, Xue P B, Bao J L, Zhou B B, Jin J, Wang J. Genome-wide transcriptomic analysis reveals the gene regulatory network that controlled by SRL1 in regulating rice leaf rolling. J Plant Growth Regul, 2022, 41: 2292-2304.
doi: 10.1007/s00344-021-10443-x
[42] 葛倩雯, 金宝花, 傅小进, 顾志敏, 陈析丰, 马伯军. 水稻卷叶矮化突变体rld的表型鉴定及基因精细定位. 浙江师范大学学报(自然科学版), 2019, 42: 434-440.
Ge Q W, Jin B H, Fu X J, Gu Z M, Chen X F, Ma B J. Phenotypic identification and gene-fine mapping of a rolling leaf and dwarf mutant rld in rice. J Zhejiang Normal Univ (Nat Sci Edn), 2019, 42: 434-440 (in Chinese with English abstract).
[43] 张谷禹, 唐诗闻, 吴凡, 向威, 黎腊梅, 陈永军, 邹挺, 彭友林, 胡运高. 水稻卷叶半不育突变体的鉴定及初步遗传分析. 杂交水稻, 2019, 34(5): 46-50.
Zhang G Y, Tang S W, Wu F, Xiang W, Li L M, Chen Y J, Zou T, Peng Y L, Hu Y G. Identification and preliminary genetic analysis of a leaf-rolling and semi-sterile mutant in rice. Hybrid Rice, 2019, 34(5): 46-50 (in Chinese with English abstract).
[44] 韩保林, 陶宇, 张洪凯, 顾朝剑, 廖泳祥, 彭永彬, 张红宇, 徐培洲, 陈晓琼, 吴先军. 水稻叶片内卷突变体rl(t)的鉴定与基因定位. 中国水稻科学, 2017, 31: 149-156.
doi: 10.16819/j.1001-7216.2017.6137
Han B L, Tao Y, Zhang H K, Gu C J, Liao Y X, Peng Y B, Zhang H Y, Xu P Z, Chen X Q, Wu X J. Identification and gene mapping of a rolled leaf mutant rl(t) in rice. Chin J Rice Sci, 2017, 31: 149-156 (in Chinese with English abstract).
[45] Wen X X, Sun L P, Chen Y Y, Xue P, Yang Q Q, Wang B F, Yu N, Cao Y R, Zhang Y, Gong K, Wu W X, Chen D B, Cao L Y, Cheng S H, Zhang Y X, Zhan X D. Rice Dwarf and low tillering 10 (OsDLT10) regulates tiller number by monitoring auxin homeostasis. Plant Sci, 2020, 297: 110502.
doi: 10.1016/j.plantsci.2020.110502
[46] Yu Q, Chen L, Zhou W Q, An Y H, Luo T X, Wu Z L, Wang Y Q, Xi Y F, Yan L F, Hou S W. RSD1 is essential for stomatal patterning and files in rice. Front Plant Sci, 2020, 11: 600021.
doi: 10.3389/fpls.2020.600021
[1] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[2] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[3] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[4] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[5] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[6] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[7] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[8] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[9] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[10] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[11] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[12] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[13] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[14] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[15] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .