Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1091-1103.doi: 10.3724/SP.J.1006.2024.34142

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone

MIAO Long1**(), SHU Kuo1**(), LI Juan1, HUANG Ru1, WANG Ye-Xing1, Soltani Muhammad YOUSOF1, XU Jing-Hao1, WU Chuan-Lei1, LI Jia-Jia1, WANG Xiao-Bo1,*(), QIU Li-Juan2,*()   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), the Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Gene Resource and Germplasm Enhancement, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2023-07-20 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-08
  • Contact: E-mail: wxbphd@163.com; E-mail: qiulijuan@caas.cn E-mail:lmiao5@163.com;1125974604@qq.com;wxbphd@163.com;qiulijuan@caas.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2021YFD1201605);Natural Science Foundation of Anhui Province(2308085MC88);Natural Science Foundation of Anhui Province(2108085QC114);Natural Science Foundation Project of Anhui Agricultural University(k2031005)

Abstract:

Root-stem transition zone (RSTZ) connects roots and stems, and its morphology modifies the structure of aerial part and lodging resistance potential in soybean. In this study, a soybean mutant Mrstz, appearing with curved or rotated RSTZ, was obtained by EMS mutagenesis. Its morphological characteristics were stably inherited and could provide specific sources for exploring the development patterns of soybean stems. Therefore, this mutant was crossed with Zhonghuang 13 to construct a recombinant inbred line population. By comparing the anatomical structure of vertical RSTZ and curved RSTZ, the wider vascular cambium, more secondary xylem cell layers and irregular cell shape were identified in curved lines, indicating that vascular cambium differentiation may be one of the important factors leading to the difference of RSTZ morphology. Subsequently, the chemical compositions of lines with vertical RSTZ or curved RSTZ were determined, respectively. It was found that the higher lignin and crude fiber content in the RSTZ, the more difficult to bend. The RSTZ with curved or vertical lines were further selected for BSA-seq. SNP-index and InDel-index methods were employed to mine a significant association region, Chr. 19: 43,030,943-45,849,854 containing 319 genes, which may regulate RSTZ morphology. Combined bioinformatics analysis, gene annotation information and expression abundance analysis, seven candidate genes (Glyma.19G170200, Glyma.19G201500, Glyma.19G187800, Glyma.19G178200, Glyma.19G197000, Glyma.19G179100, Glyma.19G196900) were screened. Among them, Glyma.19G187800, Glyma.19G178200, and Glyma.19G196900 potentially affected RSTZ morphogenesis in soybean domestication. This study not only provides germplasm resources for the understanding of soybean RSTZ tissue formation and its genetic basis, but also provides new insights for further exploration of genes regulating soybean stalk development.

Key words: soybean, root and stem transition zone, mutant, BSA-seq, candidate genes

Fig. 1

Comparison of plants with vertical or curved in the root-stem transition zone and its anatomical structures A: soybean plants with vertical or curved RSTZ at the VC, V6, R5, and R8 stages; B: the anatomical structure of hypocotyl for vertical and curved lines at R5 stage; Vc: vascular cambium; Sx: secondary xylem; Sp: secondary phloem. Bar: 2 cm (A) and 50 μm (B). VC: at cotyledon stage; V6: at six leaves stage; R5: at beginning seed stage; R8: at maturity stage."

Fig. 2

Distribution and comparison of chemical components in the vertical and curved root-stem transition zone A, B, and C are the distribution maps of chemical components of crude fiber, cellulose, and lignin in the vertical and curved root-stem transition zone, respectively; D, E, F: histogram represents mean ± SD (*: P < 0.05, **: P < 0.01, t-test)."

Table 1

Quality evaluation of sample sequencing data"

样本类型
Sample type
纯化后读数
Clean reads
纯化后碱基数
Clean base
GC
(%)
Q30
(%)
比对上的序列
Mapped reads (%)
中黄13 Zhonghuang 13 37,644,247 11,293,274,100 36.24 94.85 98.40
根茎过渡区弯曲突变体MRstz 43,314,597 12,994,379,100 35.16 94.54 98.32
RSTZ直立型株系Vertical RSTZ lines 126,937,624 38,081,287,200 35.10 94.94 97.99
RSTZ弯曲型株系Curved RSTZ lines 130,489,056 39,146,716,800 35.88 94.56 98.14

Fig. 3

Distribution of SNP index and InDel-index association values on chromosomes Delta-SNP-index (A) and delta-InDel-index (B) fitting plots for two types of RSTZ. The abscissa indicates the position of chromosomes and the black curve represents the associated values of each site, while the top red line indicates the threshold line with the confidence level of 99%. The red arrow points to the candidate region for positioning."

Table 2

Candidate genomic regions of soybean root and stem transition zone morphylogy by BSA-seq correlation technique"

关联分析方法
Association analysis methods
染色体
Chr.
起点
Start
(bp)
终点
End
(bp)
区间大小
Region size (Mb)
基因数
Number of genes
已报道倒伏性状相关候选位点
Candidate loci for inversion reported
Delta-SNP-index 19 43,030,943 46,037,125 3.01 346 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]
Delta-InDel-index 19 42,975,089 45,849,854 2.87 323 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]
Delta-SNP-index and delta-InDel-index 19 43,030,943 45,849,854 2.82 319 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]

Fig. 4

GO annotation classification of genes in candidate regions The horizontal axis indicates the GO classification terms, while the left and right of the vertical axis represent the percentage of genes and the number of genes, respectively."

Fig. 5

Clustering heatmap of expressive abundance of all genes within the consistent association interval in different soybean tissues"

Fig. 6

Comparison of candidate gene expression levels in curved and vertical RSTZ of lines The relative expression levels of candidate genes in different lines were tested by t-test (*: P < 0.05, **: P < 0.01, and ***: P < 0.001) using GmCYP2 as the internal reference."

Table 3

Genetic diversity analysis of morphological candidate genes in roots and stem transition in soybean"

基因
Gene
单倍型
Haplotype
频率* Frequency* 核苷酸多态性 π 遗传
分化指数 FST
野生品种
Wild
当地品种
Landrace
育成品种
Cultivar
野生大豆
Wild soybean
栽培大豆
Cultivated soybean
Glyma.19G170200 Hap0-Hap6 0.095, 0.05, 0.139, 0.275, 0.160, 0.142, 0.139 0.616, 0.352, 0.032, 0, 0, 0, 0 0.719, 0.262, 0.020, 0, 0, 0, 0 0.00364 0.00198 0.22
Glyma.19G201500 Hap0-Hap6 0.305, 0.006, 0.013, 0.242, 0.082, 0.198, 0.154 0.524, 0.408, 0.052, 0, 0.013, 0, 0.002 0.612, 0.323, 0.055, 0, 0.001, 0, 0 0.00257 0.00171 0.16
Glyma.19G187800 Hap0-Hap3 0.212, 0.361, 0.206, 0.222 0.737, 0.126, 0.137, 0 0.862, 0.099, 0.039, 0 0.00373 0.00173 0.26
Glyma.19G178200 Hap0-Hap9 0.075, 0.024, 0.008, 0.012, 0.811, 0.004, 0.028, 0.004, 0.035, 0 0.258, 0.066, 0.171, 0.136, 0.002, 0.116, 0.116, 0.073, 0.021, 0.041 0.338, 0.316, 0.123, 0.082, 0.003, 0.075, 0.008, 0.026, 0.019, 0.012 0.00170 0.00107 0.32
Glyma.19G197000 Hap0-Hap2 0.695, 0.194, 0.111 0.83, 0.168, 0.002 0.727, 0.273, 0 0.00322 0.00258 0.16
Glyma.19G179100 Hap0-Hap2 0.46, 0.003, 0.537 0.965, 0.035, 0 0.937, 0.062, 0 0.00223 0.00069 0.17
Glyma.19G196900 Hap0-Hap4 0.05, 0.528, 0.142, 0.184, 0.096 0.437, 0.385, 0.174, 0.003, 0.002 0.512, 0.212, 0.275, 0, 0 0.00195 0.00123 0.28
[1] 杨红燕, 沈会权, 胡哲, 栾海业, 乔海龙, 臧慧, 徐肖, 张英虎. 黄淮海地区大豆品种蛋白质、油脂含量和百粒质量的表型分析及籽粒蛋白质含量的改良. 江苏农业科学, 2021, 49(22): 84-87.
Yang H Y, Shen H Q, Hu Z, Luan H Y, Qiao H L, Zang H, Xu X, Zhang Y H. Phenotypic analysis of protein, oil content and 100-grain weight of soybean varieties in Huanghuaihai area and improvement of grain protein content. Jiangsu Agric Sci, 2021, 49(22): 84-87 (in Chinese with English abstract).
[2] 倪福太. 植物根-茎过渡区的研究现状. 吉林师范大学学报(自然科学版), 2004, (1): 51-53.
Ni F T. The present conditions of research of root-stem transition region. J Jilin Norm Univ (Nat Sci Edn), 2004, (1): 51-53 (in Chinese with English abstract).
[3] 谷安根, 王立军, 汪牟, 谷颐. 被子植物根-茎过渡区研究的新进展. 植物研究, 1991, (3): 85-90.
Gu A G, Wang L J, Wang M, Gu Y. Advances in the study of root-stem transition region of the angiosperm. Bull Bot Res, 1991, (3): 85-90 (in Chinese with English abstract).
[4] 张东来, 徐瑶, 王家睿, 刘博, 张锐, 龚振平. 大豆生育期间抗倒伏性状变化规律的研究. 作物杂志, 2016, (2): 112-117.
Zhang D L, Xu Y, Wang J R, Liu B, Zhang R, Gong Z P. Studies on the regulation of lodging traits variation during soybean growth stages. Crops, 2016, (2): 112-117 (in Chinese with English abstract).
[5] 胡珀, 韩天富. 植物茎秆性状形成与发育的分子基础. 植物学通报, 2008, 25(1): 1-13.
Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Bull Bot, 2008, 25(1): 1-13 (in Chinese with English abstract).
[6] Raza A, Asghar M A, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, Ahmad I, Yang W, Liu W. Agro-techniques for lodging stress management in maize- soybean intercropping system: a review. Plants (Basel), 2020, 9: 1592.
doi: 10.3390/plants9111592
[7] 杨菁, 董忠民. 双子叶植物出土幼苗根茎转变区维管组织发育动态. 西北植物学报, 2003, 23: 1111-1115.
Yang J, Dong Z M. Vascular development in the transition region of dicotyledonary epigeal seedlings. Acta Bot Boreali-Occident Sin, 2003, 23: 1111-1115 (in Chinese with English abstract).
[8] 牛佳田. 根-茎间“过渡区”及其维管组织的转变与联系. 生物学通报, 1997, 32(4): 12-13.
Niu J T. The “transition zone” between root and stem and the transformation and connection of its vascular tissue. Bull Biol, 1997, 32(4): 12-13 (in Chinese with English abstract).
doi: 10.1007/s10525-005-0003-8
[9] 赵翠兰, 王丕武, 秦迪, 潘丽丹, 刘婷婷, 曲静. 拔节期玉米自交系茎秆纤维素合成酶基因的表达及其与抗倒伏的关系. 吉林农业大学学报, 2017, 39: 513-517.
Zhao C L, Wang P W, Qin D, Pan L D, Liu T T, Qu J. Correlation between expression of cellulose synthetase genes and lodging resistance at elongation stage in maize inbred lines. Jilin Agric Univ, 2017, 39: 513-517 (in Chinese with English abstract).
[10] Esau K, Cheadle V I. Significance of cell divisions in differentiating secondary phloem. Acta Bot Neerl, 1955, 4: 348-357.
doi: 10.1111/plb.1955.4.issue-3
[11] Spicer R, Groover A. Evolution of development of vascular cambia and secondary growth. New Phytol, 2010, 186: 577-592.
doi: 10.1111/j.1469-8137.2010.03236.x pmid: 20522166
[12] 陈华华, 李俊, 万洪深, 王玲玲, 彭正松, 杨武云. 实心小麦86-741茎秆的解剖分析及壁厚特性的SSR标记. 作物学报, 2008, 34: 1381-1385.
doi: 10.3724/SP.J.1006.2008.01381
Chen H H, Li J, Wan H S, Wang L L, Peng Z S, Yang W Y. Microsatellite markers for culm wall thickness and anatomical features of solid stem wheat 86-741. Acta Agron Sin, 2008, 34: 1381-1385 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01381
[13] 王芬娥, 黄高宝, 郭维俊, 张锋伟, 吴建民, 赵多佳. 小麦茎秆力学性能与微观结构研究. 农业机械学报, 2009, 40(5): 92-95.
Wang F E, Huang G B, Guo W J, Zhang F W, Wu J M, Zhao D J. Mechanical properties and micro-structure of wheat stems. Trans CSAM, 2009, 40(5): 92-95 (in Chinese with English abstract).
[14] Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved super locus regulates above- and belowground root initiation. Science, 2022, 375: eabf4368.
doi: 10.1126/science.abf4368
[15] 刘东尧, 闫振华, 陈艺博, 杨琴, 贾绪存, 李洪萍, 董鹏飞, 王群. 增温对玉米茎秆生长发育、抗倒性和产量的影响. 中国农业科学, 2021, 54: 3609-3622.
doi: 10.3864/j.issn.0578-1752.2021.17.005
Liu D Y, Yan Z H, Chen Y B, Yang Q, Jia X C, Li H P, Dong P F, Wang Q. Effects of elevated temperature on maize stem growth, lodging resistance characters and yield. Sci Agric Sin, 2021, 54: 3609-3622 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.005
[16] 马青美, 许荣荣, 赵美爱, 宋希云, 裴玉贺. 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析. 植物生理学报, 2019, 55: 1123-1132.
Ma Q M, Xu Y Y, Zhao M A, Song X Y, Pei Y H. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes. Plant Physiol J, 2019, 55: 1123-1132 (in Chinese with English abstract).
doi: 10.1104/pp.55.6.1123
[17] 王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究. 作物学报, 1991, 17: 70-75.
Wang Q Y, Hu C H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging. Acta Agron Sin, 1991, 17: 70-75 (in Chinese with English abstract).
[18] 罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346-2353.
Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreali-Occident Sin, 2007, 27: 2346-2353 (in Chinese with English abstract).
[19] Duan C, Wang B, Wang P, Wang D, Cai S. Relationship between the minute structure and the lodging resistance of rice stems. Colloids Surf B Biointerfaces, 2004, 35: 155-158.
doi: 10.1016/j.colsurfb.2004.03.005
[20] 袁新捷, 刘潇, 陈国兴. 水稻核心种质资源茎秆抗倒伏性研究. 华中农业大学报, 2021, 40(1): 147-153.
Yuan X J, Liu X, Chen G X. Stem lodging resistance of rice core germplasm. J Huazhong Agric Univ, 2021, 40(1): 147-153 (in Chinese with English abstract).
[21] 邹俊林, 刘卫国, 袁晋, 蒋涛, 叶素琴, 邓榆川, 杨晨雨, 罗玲, 杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41: 1098-1104.
doi: 10.3724/SP.J.1006.2015.01098
Zou J L, Liu W G, Yuan J, Jiang T, Ye S Q, Deng Y C, Yang C Y, Luo L, Yang W Y. Relationship between lignin synthesis and lodging resistance at seedlings stage in soybean intercropping system. Acta Agron Sin, 2015, 41: 1098-1104 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01098
[22] Yu M, Wang M, Gyalpo T, Basang Y. Stem lodging resistance in hulless barley: transcriptome and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics, 2021, 113: 935-943.
doi: 10.1016/j.ygeno.2020.10.027 pmid: 33127582
[23] Wang X, Shi Z, Zhang R, Sun X, Wang J, Wang S, Zhang Y, Zhao Y, Su A, Li C, Wang R, Zhang Y, Wang S, Wang Y, Song W, Zhao J. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol, 2020, 20: 515.
doi: 10.1186/s12870-020-02728-2 pmid: 33176702
[24] 张丰转, 金正勋, 马国辉, 万宜珍, 刘海英, 徐美兰. 水稻抗倒性与茎秆形态性状和化学成分含量间相关分析. 作物杂志, 2010, (4): 15-19.
Zhang F Z, Jin Z X, Ma G H, Wan Y Z, Liu H Y, Xu M L. Correlation analysis between lodging resistance and morphological characters of physical and chemical components in Rice's Culms. Crops, 2010, (4): 15-19 (in Chinese with English abstract).
[25] Silva B R S, Batista B L, Lobato A K S. Anatomical changes in stem and root of soybean plants submitted to salt stress. Plant Biol (Stuttg), 2021, 23: 57-65.
doi: 10.1111/plb.v23.1
[26] Vignols F, Rigau J, Torres M A, Capellades M, Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell, 1995, 7: 407-416.
doi: 10.1105/tpc.7.4.407 pmid: 7773015
[27] 蒋家焕, 朱永生, 陈丽萍, 郑艳梅, 蔡秋华, 谢华安, 王爱荣, 张建福. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1. 福建农业学报, 2022, 37(2): 131-137.
Jiang J H, Zhu Y S, Chen L P, Zheng Y M, Cai Q H, Xie H A, Wang A R, Zhang J F. Using BSA-Seq method to locate a rice progeria related gene OsBRCA1. Fujian J Agric Sci, 2022, 37(2): 131-137 (in Chinese with English abstract).
[28] 崔彦芹, 郭元章, 侯少锋, 李思达, 关中波, 徐桂珍. 基于BSA-seq技术挖掘芝麻株高相关候选基因. 华北农学报, 2021, 36(增刊1): 8-15.
Cui Y Q, Guo Y Z, Hou S F, Li S D, Guan Z B, Xu G Z. Mining of sesame plant height-related candidate genes based on BSA-seq technology. Acta Agric Boreali-Sin, 2021, 36(S1): 8-15 (in Chinese with English abstract).
[29] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel phytophthora resistance gene RpsHC18 in soybean. Theor Appl Genet, 2018, 131: 525-538.
doi: 10.1007/s00122-017-3016-z pmid: 29138903
[30] 张东来, 徐瑶, 王家睿, 刘博, 张锐, 龚振平. 大豆生育期间抗倒伏性状变化规律的研究. 作物杂志, 2016, (2): 112-117.
Zhang D L, Xu Y, Wang J R, Liu B, Zhang R, Gong Z P. Study on the variation of lodging resistance during soybean growth period. Crops, 2016, (2): 112-117 (in Chinese with English abstract).
[31] Nleya T, Sexton P, Gustafson K, Moriles Miller J. Soybean growth stages. In: Clay D E, Carlson C G, Clay S A, Wagner L, Deneke D, Hay C, eds. I. Grow soybean: Best Management Practices for Soybean Production. South Dakota State University, SDSU Extension, Brookings, SD, USA, 2013. pp 3-34.
[32] 尹振功, 王强, 孟宪欣, 郭怡璠, 魏淑红. 基于物理图谱的大豆倒伏性状QTL整合及元分析. 黑龙江农业科学, 2018, 291(9): 1-5.
Yin Z G, Wang Q, Meng X X, Guo Y F, Wei S H. QTL integration and meta-analysis of physical mapping-based traits for backwardness in soybean. Heilongjiang Agric Sci, 2018, 291(9): 1-5 (in Chinese with English abstract).
[33] Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran LP, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131.
doi: 10.1186/s12870-019-1746-6
[34] Yang Z, Wang S, Huang Y, Luo C, Fang C, Liu B, Yang Q Y, Kong F. 4kSoyGVP provides a referenced variation map for genetic research in soybean. Plant Biotechnol J, 2023: 8.
[35] Kong X, Liu G, Liu J, Ding Z. The root transition zone: a hot spot for signal crosstalk. Trends Plant Sci, 2018, 23: 403-409.
doi: S1360-1385(18)30023-2 pmid: 29500073
[36] Langer M, Speck T, Speck O. Petiole-lamina transition zone: a functionally crucial but often overlooked leaf trait. Plants (Basel), 2021, 10: 774.
doi: 10.3390/plants10040774
[37] Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z, Sun W, Song Y. Combating dual challenges in maize under high planting density: stem lodging and kernel abortion. Front Plant Sci, 2021, 12: 699085.
doi: 10.3389/fpls.2021.699085
[38] 贾燕杰, 油清波, 赵为, 郭葳, 沈欣杰, 李祥, 张永兴, 周蓉, 赵剑, 周新安, 矫永庆. 野生大豆(Glycine soja) YD63和栽培大豆(G. max) ZD19茎秆解剖结构比较. 中国油料作物学报, 2018, 40: 199-208.
Jia Y J, You Q B, Zhao W, Guo W, Shen X J, Li X, Zhang Y X, Zhou R, Zhao J, Zhou X A, Jiao Y Q. Comparison of stem anatomical structure between wild soybean (Glycine soja) YD63 and cultivated soybean (G. max) ZD19. Chin J Oil Crop Sci, 2018, 40: 199-208 (in Chinese with English abstract).
[39] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转绿组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of stem morphogenesis under shade stress in soybean. Acta Agron Sin, 2016, 42: 1319-1331 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01319
[40] 杨伟林. 腐木和玉米秸秆降解菌的筛选及转基因菌1-5功能初步分析. 南阳师范学院硕士学位论文, 河南南阳, 2018.
Yang W L. creening of Decomposing Bacteria from Rotten Wood and Corn Stalk and Preliminary Analysis of 1-5 Function of Transgenic Bacteria. MS Thesis of Nanyang Normal University, Nanyang, Henan, China, 2018 (in Chinese with English abstract).
[41] Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689-701.
doi: 10.1105/tpc.9.5.689 pmid: 9165747
[42] Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 455-496.
doi: 10.1146/arplant.1990.41.issue-1
[43] Zhang Y, Wang J L, Du J J, Zhao Y X, Lu J X, Wen W L, Gu S H, Fan C J, Wang Y C, Wu S, Wang Y J, Liao S J, Zhao J, Guo X Y. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnol J, 2021, 19: 35-50.
doi: 10.1111/pbi.v19.1
[44] Hussain S, Liu T, Iqbal N, Brestic M, Pang T, Mumtaz M, Shafiq I, Li S, Wang L, Gao Y, Khan A, Ahmad I, Allakhverdiev S I, Liu W, Yang W. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem Photobiol Sci, 2020, 19: 462-472.
doi: 10.1039/c9pp00369j
[45] 胡丹, 刘星贝, 汪灿, 杨浩, 李鹤鑫, 阮仁武, 袁晓辉, 易泽林. 不同抗倒性甜荞茎秆木质素合成关键酶基因的表达分析. 中国农业科学, 2015, 48: 1864-1872.
doi: 10.3864/j.issn.0578-1752.2015.09.20
Hu D, Liu X B, Wang C, Yang H, Li H X, Ruan R W, Yuan X H, Yi Z L. Expression analysis of key enzyme genes in lignin synthesis of culm among different lodging resistances of common buckwheat. Sci Agric Sin, 2015, 48: 1864-1872 (in Chinese with English abstract).
[46] 周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35: 57-65.
doi: 10.3724/SP.J.1006.2009.00057
Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S P, Qiu D Z, Zhou X A, Wu J S. QTL analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35: 57-65 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00057
[47] 向达兵, 郭凯, 雷婷, 于晓波, 罗庆明, 杨文钰. 磷钾营养对套作大豆茎秆形态和抗倒性的影响. 中国油料作物学报, 2010, 32: 395-402.
Xiang D B, Guo K, Lei T, Yu X B, Luo Q M, Yang W Y. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean. Chin J Oil Crop Sci, 2010, 32: 395-402 (in Chinese with English abstract).
[48] Hwang S, Lee T G. Integration of lodging resistance QTL in soybean. Sci Rep, 2019, 9: 6540.
doi: 10.1038/s41598-019-42965-6 pmid: 31024048
[49] Lee S H, Bailey M A, Mian M A, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet, 1996, 92: 516-523.
doi: 10.1007/BF00224553 pmid: 24166318
[50] 刘硕, 郭勇, 罗玲, 邱丽娟. 大豆倒伏性相关QTL的整合及Overview分析. 植物遗传资源学报, 2014, 15: 137-143.
doi: 10.13430/j.cnki.jpgr.2014.01.017
Liu S, Guo Y, Luo L, Qiu L J. Integration and overview analysis of QTLs related to lodging in soybean (Glycine max). J Plant Genet Resour, 2014, 15: 137-143 (in Chinese with English abstract).
[51] Caffall K H, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res, 2009, 344: 1879-1900.
doi: 10.1016/j.carres.2009.05.021
[52] Assefa T, Otyama P I, Brown A V, Kalberer S R, Kulkarni R S, Cannon S B. Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. BMC Genomics, 2019, 20: 527.
doi: 10.1186/s12864-019-5907-7 pmid: 31242867
[53] Hongo S, Sato K, Yokoyama R, Nishitani K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell, 2012, 24: 2624-2634.
doi: 10.1105/tpc.112.099325
[54] Wang C Y, Zhang S, Yu Y, Luo Y C, Liu Q, Ju C, Zhang Y C, Qu L H, Lucas W J, Wang X, Chen Y Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J, 2014, 12: 1132-1142.
doi: 10.1111/pbi.2014.12.issue-8
[55] Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X. MicroRNA857 is is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol, 2015, 169: 2539-2552.
[1] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[2] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[3] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[4] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[5] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[6] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[7] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[8] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[9] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[10] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[11] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[12] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[13] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[14] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[15] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .