Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1223-1235.doi: 10.3724/SP.J.1006.2024.34202

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed

ZHANG Hong-Mei1(), ZHANG Wei1, WANG Qiong1, JIA Qian-Ru1, MENG Shan2, XIONG Ya-Wen3, LIU Xiao-Qing1, CHEN Xin1, CHEN Hua-Tao1,3,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    3College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2023-12-01 Accepted:2024-01-31 Online:2024-05-12 Published:2024-02-09
  • Contact: E-mail: cht@jaas.ac.cn
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)5002);National Natural Science Foundation of China(32001455);National Natural Science Foundation of China(30771360)

Abstract:

Vitamin E (Ve) is a natural antioxidant in soybean oil and an important index to evaluate the nutritional value of soybean oil. In this study, α-, γ-, and δ- contents of seed were determined from a natural soybean population containing 264 germplasm resources in 2021 and 2022, and genome-wide association study (GWAS) was conducted. A total of 199 SNPs significantly associated with soybean Ve content were detected in this study, among which 9 SNPs that could be repeatedly detected in two different environments or two traits, which located on chromosomes 3, 7, 11, 12, 13, 15, 17, and 18, respectively. Among them, the significant association signal on chromosome 7 was a major effect site controlling α-tocopherol content, which can be detected in two environments, with the explanation rate of phenotypic variation 9.83%. By screening the candidate genes of this site, Glyma.07G054000 encoding myb transcription factor was obtained, which may be the effect gene of this site. In addition, two genes encoding γ-tocopherol methyltransferase Glyma.12G014200 and Glyma.12G014300 obtained on chromosome 12, may be important genes affecting Ve content. The results of this study are helpful to analyze the genetic basis and regulatory mechanism of Ve content in soybean seed, and lay a foundation for genetic improvement of soybean quality.

Key words: soybean, seed, Ve content, GWAS, candidate gene

Table 1

Phenotypic variation of Ve content in soybean seed"

性状
Trait
年份
Year
平均值
Mean
标准差
SD
变幅
Range
变异系数
CV (%)
α-Toc 2021 20.22 6.18 5.62-40.26 30.57
2022 15.00 8.37 1.79-59.72 55.78
γ-Toc 2021 164.37 33.56 56.69-269.85 20.42
2022 188.31 73.68 46.57-426.70 39.13
δ-Toc 2021 19.96 4.63 4.53-35.04 23.19
2022 22.26 8.49 5.26-47.24 38.16
TVe 2021 204.48 40.47 75.69-321.98 19.79
2022 225.57 87.78 54.70-498.38 38.92

Fig. 1

Frequency distribution of Ve content in soybean seed"

Table S1

Analysis of variance (ANOVA) for Ve of soybean seed in two years"

年份
Year
生育酚
Tocopherol
变异来源
Source of variation
自由度
DF
均方
MS
F
F-value
2021 α-生育酚α-Toc 基因型Genotype 253 114.61 37.78**
重复Replication 2 5.45 1.80
误差Residual error 506 3.03
γ-生育酚γ-Toc 基因型Genotype 253 3379.16 28.53**
重复Replication 2 1588.32 13.41**
误差Residual error 506 118.43
δ-生育酚δ-Toc 基因型Genotype 253 64.15 52.03**
重复Replication 2 5.50 4.46*
误差Residual error 506 1.23
总生育酚TVe 基因型Genotype 253 4914.24 16.96**
重复Replication 2 2022.39 6.98**
误差Residual error 506 289.80
2022 α-生育酚α-Toc 基因型Genotype 208 182.18 118.53**
重复Replication 2 0.77 0.50
误差Residual error 416 1.54
γ-生育酚γ-Toc 基因型Genotype 208 16,365.00 90.26**
重复Replication 2 315.28 1.74
误差Residual error 416 181.31
δ-生育酚δ-Toc 基因型Genotype 209 210.00 79.66**
重复Replication 2 4.74 1.80
误差Residual error 416 2.64
总生育酚TVe 基因型Genotype 208 23,217.00 130.40**
重复Replication 2 10,967.00 61.60**
误差Residual error 416 178.04

Table 2

Correlation analysis of Ve content in soybean seed"

性状Trait 年份Year α-Toc γ-Toc δ-Toc
γ-Toc 2021 0.46** 1.00
2022 0.73** 1.00
δ-Toc 2021 0.37** 0.77** 1.00
2022 0.62** 0.92** 1.00
TVe 2021 0.58** 0.99** 0.81**
2022 0.77** 1.00 0.93**

Fig. 2

Manhattan and Q-Q diagrams of Ve content of soybean seed in two years A: Manhattan and Q-Q plots of α-tocopherol content in 2021 and 2022; B: Manhattan and Q-Q plots of δ-tocopherol content in 2021 and 2022; C: Manhattan and Q-Q plots of γ-tocopherol acid content in 2021 and 2022; D: Manhattan and Q-Q plots of total-tocopherol content in 2021 and 2022. When the threshold of SNP -log10(P) ≥ 5.0 (above the red line), it is considered the SNP is significant site."

Table 3

Significant SNP associated with Ve in soybean seed"

代表性SNP
Lead SNP
性状
Trait
染色体
Chr.
位置
Position
-log10(P) 表型变异
R2 (%)
S03_22378753 γ-Toc (2022), δ-Toc (2022) 3 22,378,753 6.46 11.05
S07_4623771 α-Toc (2021, 2022) 7 4,623,771 5.49 9.83
S11_5633216 γ-Toc (2022), TVe (2022) 11 5,633,216 5.81 9.36
S12_980498 γ-Toc (2022), δ-Toc (2022), TVe (2022) 12 980,498 5.75 9.62
S13_26738088 γ-Toc (2022), δ-Toc (2022), TVe (2022) 13 26,738,088 5.77 9.68
S15_15320539 γ-Toc (2022), TVe (2022) 15 15,320,539 5.19 8.20
S17_21854720 γ-Toc (2021), TVe (2021) 17 21,854,720 5.66 8.02
S18_51917901 γ-Toc (2022), TVe (2022) 18 51,917,901 6.34 10.24
S18_55638538 γ-Toc(2022), TVe(2022) 18 55,638,538 5.61 7.94

Fig. 3

Haplotype analysis for SNPs associated with Ve in soybean natural population A: the box plot of γ-tocopherol and δ-tocopherol content of soybean varieties with S03_22378753-G or S03_22378753-T in 2022. B: the box plot of α-tocopherol content of soybean varieties with S07_4623771-C or S07_4623771-A in 2021 and 2022. C: the box plot of γ-tocopherol and TVe content of soybean varieties with S11_5633216-C or S11_5633216-A in 2022. D: the box plot of γ-tocopherol, δ-tocopherol and TVe content of soybean varieties with S12_980498-A or S12_980498-T in 2022. E: the box plot of γ-tocopherol, δ-tocopherol and TVe content of soybean varieties with SNP S13_26738088-G or SNP S13_26738088-A in 2022. F: the box plot of γ-tocopherol and TVe content of soybean varieties with S15_15320539-T or S15_15320539-C in 2022. G: the box plot of γ-tocopherol and TVe content of soybean varieties with S17_21854720-G or S17_21854720-A in 2021. H: the box plot of γ-tocopherol and TVe content of soybean varieties with S18_51917901-A or S18_51917901-C in 2022. I: the box plot of γ-tocopherol and TVe content of soybean varieties with S18_55638538-G or S18_55638538-A in 2022. α-Toc: α-tocopherol; γ-Toc: γ-tocopherol; δ-Toc: δ-tocopherol; TVe: Total Ve. The significance analysis was used t-test. *, **, and *** indicate significance at P < 0.05, P < 0.01, and P < 0.001, respectively."

Table 4

Major candidate genes for Ve content of soybean seed in natural population"

基因ID
Gene ID
染色体
Chr.
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
Glyma.03G081900 3 22,433,399-22,436,557 AT2G37630 myb类HTH转录调控家族蛋白
myb-like HTH transcriptional regulator family protein
Glyma.07G054000 7 4,722,086-4,723,755 AT5G49330 myb结构域蛋白111 myb domain protein 111
Glyma.11G074900 11 5,593,155-5,596,693 AT4G38960 B-box型锌指家族蛋白 B-box type zinc finger family protein
Glyma.12G014200 12 1,025,584-1,029,095 AT1G64970 γ-生育酚甲基转移酶 Gamma-tocopherol methyltransferase
Glyma.12G014300 12 1,033,151-1,037,054 AT1G64970 γ-生育酚甲基转移酶 Gamma-tocopherol methyltransferase
Glyma.13G153200 13 26,821,405-26,825,518 AT3G44460 bZIP转录因子家族蛋白
Basic-leucine zipper (bZIP) transcription factor family protein

Fig. 4

Relative expression patterns of six Ve content related candidate genes during soybean seed development"

Table 5

Selected elite accessions of Ve related traits"

性状
Trait
材料编号
Material No.
名称
Name
类型
Type
来源
Origin
优异等位变异位点
Excellent allelic variation site
α-Toc
(μg g-1)
TVe
(μg g-1)
2021 2022 2022
α-Toc NPS001 9 地方种
Landrace
河北
Hebei
S07_4623771-C 37.86 33.60
NPS020 NX-NC-39 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 31.08 33.17
NPS023 NX-9484 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 34.25 35.09
NPS027 NX-F5-5 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 38.72 37.89
TVe NPS017 NX-F4-2 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 424.20
NPS018 NX-23-25 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 426.32
NPS019 NX-F5-1 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 467.84
NPS020 NX-NC-39 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 498.38
NPS023 NX-9484 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_51917901-C 417.22
NPS029 NX-F7-59 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A 413.86
NPS203 滇豆4号
Diandou 4
栽培种
Cultivar
云南
Yunnan
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A 409.55
[1] Barouh N, Bourlieu-Lacanal C, Figueroa-Espinoza M C, Durand E, Villeneuve P. Tocopherols as antioxidants in lipid-based systems: the combination of chemical and physicochemical interactions determines their efficiency. Compr Rev Food Sci Food Saf, 2022, 21: 642-688.
doi: 10.1111/crf3.v21.1
[2] Cho E A, Lee C A, Kim Y S, Baek S H, de los Reyes B G, Yun S J. Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells, 2005, 19: 16-22.
doi: 10.1016/S1016-8478(23)13131-1
[3] Tavva V S, Kim Y H, Kagan I A, Dinkins R D, Kim K H, Collins G B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26: 61-70.
doi: 10.1007/s00299-006-0218-2 pmid: 16909228
[4] Ujile A, Yamada T, Fujimoto K, Endo Y, Kitamura K. Identification of soybean varieties with high α-tocopherol content. Breed Sci, 2005, 55: 123-125.
doi: 10.1270/jsbbs.55.123
[5] Kanwischer M, Porfirova S, Bergmüller E, Dörmann P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol, 2005, 137: 713-723.
pmid: 15665245
[6] Dwiyanti M S, Ujiie A, Thuy L T B, Yamada T, Kitamura K. Genetic analysis of high α-tocopherol content in soybean seeds. Breed Sci, 2007, 57: 23-28.
doi: 10.1270/jsbbs.57.23
[7] Dwiyanti M S, Yamada T, Sato M, Abe J, Kitamura K. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol, 2011, 11: 152.
doi: 10.1186/1471-2229-11-152 pmid: 22053941
[8] Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 2010, 120: 1405-1413.
doi: 10.1007/s00122-010-1264-2 pmid: 20069414
[9] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015, 41: 187-196.
doi: 10.3724/SP.J.1006.2015.00187
Zhang H H, Li H C, Wen Z X, Gu H P, Yuan X X, Chen H T, Cui X Y, Chen X, Lu W G. Identification of QTL associated with vitamin E content in soybean seeds. Acta Agron Sin, 2015, 41: 187-196 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00187
[10] Shaw E, Rajcan I. Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’בOAC Shire’. Plant Breed, 2017, 136: 83-93.
doi: 10.1111/pbr.2017.136.issue-1
[11] Park C, Dwiyanti M S, Nagano A J, Liu B, Yamada T, Abe J. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biol, 2019, 19: 510.
doi: 10.1186/s12870-019-2117-z pmid: 31752696
[12] Knizia D, Yuan J, Lakhssassi N, El Baze A, Cullen M, Vuong T, Mazouz H, T Nguyen H, Kassem M A, Meksem K. QTL and candidate genes for seed tocopherol content in ‘Forrest’ by ‘Williams 82’ recombinant inbred line (RIL) population of soybean. Plants (Basel), 2022, 11: 1258.
doi: 10.3390/plants11091258
[13] Park C, Liu D, Wang Q, Xu D. Identification of quantitative trait loci and candidate genes controlling the tocopherol synthesis pathway in soybean (Glycine max). Plant Breed, 2023, 142: 489-499.
doi: 10.1111/pbr.v142.4
[14] Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee Suk-Ha, Wang W, Tian Z. Resequencing wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096
[15] Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[16] Zhang S, Hao D, Zhang S, Zhang D, Wang H, Du H, Kan G, Yu D. Genome-wide association mapping for protein, oil and water- soluble protein contents in soybean. Mol Genet Genomics, 2021, 296: 91-102.
doi: 10.1007/s00438-020-01704-7
[17] Zhang J, Wang X, Lu Y, Bhusal S J, Song Q, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230
[18] Sui M, Jing Y, Li H, Zhan Y, Luo J, Teng W, Qiu L, Zheng H, Li W, Zhao X, Han Y. Identification of loci and candidate genes analyses for tocopherol concentration of soybean seed. Front Plant Sci, 2020, 11: 539460.
doi: 10.3389/fpls.2020.539460
[19] Chu D, Zhang Z, Hu Y, Fang C, Xu X, Yuan J, Zhang J, Tian Z, Wang G. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds. Plant Commun, 2023, 4: 100598.
doi: 10.1016/j.xplc.2023.100598
[20] Yu K, Miao H, Liu H, Zhou J, Sui M, Zhan Y, Xia N, Zhao X, Han Y. Genome-wide association studies reveal novel QTLs, QTL-by-environment interactions and their candidate genes for tocopherol content in soybean seed. Front Plant Sci, 2022, 13: 1026581.
doi: 10.3389/fpls.2022.1026581
[21] Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Song L, Zhu Y, Chen X, Chen H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329-1341.
doi: 10.1007/s00122-021-03774-6 pmid: 33507340
[22] Xu W, Wang Q, Zhang W, Zhang H, Liu X, Song Q, Zhu Y, Cui X, Chen X, Chen H. Using transcriptomic and metabolomic data to investigate the molecular mechanisms that determine protein and oil contents during seed development in soybean. Front Plant Sci, 2022, 13: 1012394.
doi: 10.3389/fpls.2022.1012394
[23] Kamal-Eldin A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol, 2006, 108: 1051-1061.
doi: 10.1002/ejlt.v108:12
[24] Savidge B, Weiss J D, Wong Y H, Lassner M W, Mitsky T A, Shewmaker C K, Post-Beittenmiller D, Valentin H E. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol, 2002, 129: 321-332.
doi: 10.1104/pp.010747 pmid: 12011362
[25] Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P. Isolation of an Arabidopsis mutant lacking Vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA, 2002, 19: 12495-12500.
[26] Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W, Morris B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.2013.132.issue-6
[27] Bachlava E, Dewey R E, Burton J W, Cardinal A J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433-442.
doi: 10.2135/cropsci2008.06.0324
[28] Yao Y, You Q, Duan G, Ren J, Chu S, Zhao J, Li X, Zhou X, Jiao Y. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol, 2020, 20: 51.
doi: 10.1186/s12870-019-2199-7 pmid: 32005156
[29] Li H, Wang Y, Han Y, Teng W, Zhao X, Li Y, Li W. Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL × environment effects. Plant Breed, 2016, 135: 208-214.
doi: 10.1111/pbr.2016.135.issue-2
[30] 刘焕成. 大豆维生素E 遗传变异、QTL及环境互作效应分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2017.
Liu H C. Genetic Variation, QTL and QTL-by-environment Interactions for Seed Vitamin E in Soybean. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2017 (in Chinese with English abstract).
[31] Zhang L, Luo Y, Liu B, Zhang L, Zhang W, Chen R, Wang L. Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds. Transgenic Res, 2020, 29: 95-104.
doi: 10.1007/s11248-019-00180-z pmid: 31673914
[32] Guo Y, Li D, Liu T, Liao M, Li Y, Zhang W, Liu Z, Chen M. Effect of overexpression of γ-Tocopherol Methyltransferase on α-tocopherol and fatty acid accumulation and tolerance to salt stress during seed germination in Brassica napus L. Int J Mol Sci, 2022, 23: 15933.
doi: 10.3390/ijms232415933
[33] Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription factors as regulators of secondary metabolism in plants. Biology (Basel), 2020, 9: 61.
doi: 10.3390/biology9030061
[34] Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie A R, Weisshaar B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol, 2010, 188: 985-1000.
doi: 10.1111/j.1469-8137.2010.03421.x pmid: 20731781
[35] Wang C Q, Guthrie C, Sarmast M K, Dehesh K. BBX19 interacts with constant to repress flowering locus transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell, 2014, 26: 3589-3602.
doi: 10.1105/tpc.114.130252
[36] 孟珊. 中国大豆地方品种群体异黄酮性状的全基因组关联分析、区域分化和优化组合设计. 南京农业大学博士学位论文, 江苏南京, 2014.
Meng S. Genome-wide Association Dissection, Regional Differentiation and Optimal Cross Design of Seed Isoflavone Traits of Chinese Soybean Landrace Population. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[1] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[2] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[3] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[4] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[5] ZHANG Li-Lan, YANG Jun, WANG Rang-Jian. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants [J]. Acta Agronomica Sinica, 2024, 50(4): 871-886.
[6] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[7] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[8] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[9] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[10] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[11] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[12] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[13] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[14] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[15] SONG Song-Quan, TANG Cui-Fang, LEI Hua-Ping, JIANG Xiao-Cheng, WANG Wei-Qing, CHENG Hong-Yan. Research progress of seed dormancy and germination regulation [J]. Acta Agronomica Sinica, 2024, 50(1): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!