Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1207-1222.doi: 10.3724/SP.J.1006.2024.33046

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene

HAN Jie-Nan1(), ZHANG Ze1,2, LIU Xiao-Li1, LI Ran1, SHANG-GUAN Xiao-Chuan1,2, ZHOU Ting-Fang1,2, PAN Yue1, HAO Zhuan-Fang1, WENG Jian-Feng1, YONG Hong-Jun1, ZHOU Zhi-Qiang1, XU Jing-Yu2, LI Xin-Hai1,2, LI Ming-Shun1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2023-08-01 Accepted:2023-10-23 Online:2024-05-12 Published:2023-11-13
  • Contact: E-mail: limingshun@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1201004);China Agriculture Research System of MOF and MARA(Maize, CARS-02)

Abstract:

The primary variety of fresh maize known as waxy maize undergoes a transformation with the introduction of the opaque2 (o2) mutant gene, resulting in an increased lysine content, thus improving the grain's nutritional composition. Yet, the o2 mutation brings about desirable agronomic traits such as wrinkle formation and a decrease in starch content, which restrict its use in breeding applications. To explore the high performing waxy maize o2 receptors, we capitalized on the use of o2 near-isogenic line (o2-NIL), specifically the plump and round grain type Nuo 2/wx1wx1o2o2 and its wrinkled counterpart, Huangnuo2/wx1wx1o2o2. Measurements of 100-grain weight and grain composition at the fresh ear and mature stages showed that there was difference in starch and soluble sugar content, which might be the primary cause of kernel phenotype variation between the two waxy maize o2-NILs. Genetic analysis of starch synthesis in the two o2-NILs was performed using qRT-PCR technique revealed that six gene-regulated trends fluctuated between 10 and 24 days after pollination, among which Sh1, Sh2, SSIIIa, and SBEIIb genes were significant differences. Endosperm transcriptomes indicated that 24 genes encoding trehalose and glycosyl hydrolases and 48 genes involved in endosperm modification exhibited distinct changes between the two o2-NILs. There was no detectable alteration in the 100-grain weight or the starch content of Nuo 2/wx1wx1o2o2, which may well be tied to the early high-level expression of the primary starch synthesis gene, leaving later stages unchanged compared with the control. Furthermore, the shifts in the expression of sugar metabolism genes was beneficial to starch synthesis, which may be an important reason why starch content and 100-kernel weight of Nuo 2/wx1wx1o2o2 were unaffected by the o2 mutation, and grain traits were significantly better than the superior grain traits compared with Huangnuo 2/wx1wx1o2o2. These results may be directly related to the differential expression of multiple endosperm modifying genes. The results of this study can provide important reference for the future utilization of o2 mutants in maize breeding.

Key words: waxy maize, Nuo 2/wx1wx1o2o2, Huangnuo 2/wx1wx1o2o2, kernel fullness degree, starch, sucrose metabolism, different expression genes

Table S1

Information of RT-PCR primers"

基因名称
Gene ID
引物序列
Primer sequence (5'-3')
片段长度
Production size (bp)
退火温度
Annealing temperature (℃)
Zm00001d045042
(Sh1)
TGTTTCACCGCAATTCGCA 190 60
AGACAGGTGAACGAGCAGGC
Zm00001d029091
(Sus1)
GAAGCGTTCGGTCTCACC 162 60
GAAGAAGTCGGCCATCAG
Zm00001d050032
(Bt2)
CTATGACCGTTTTGCTCCAAT 195 60
GCACCCATTAGTAAACTGTCCTC
Zm00001d044129
(Sh2)
CGTGTCAGCTCTGGATGTGAA 210 60
AGCCTCTTGGATGCCCTTA
Zm00001d045261
(SSI)
GACATTAATGATTGGAACCCTGCC 187 60
GAATGAGATCAATGCCTTTCTG
Zm00001d037234
(SSIIa)
CTGCACTCCTGCCTGTTTAT 175 60
GGATCGTACAGCTCGAAATGTT
Zm00001d000002
(SSIIIa)
CAAAAGGGGATCCACCTGATCA 208 60
CAGAGCCAGCGTATATCAGAT
Zm00001d016684
(SBEIIb)
TAGACTTATCACAATGGGTTTAGGA 227 60
GCATTGCCTGATCAAACTCTTG
Zm00001d017502 GTCGCAGGACTCGTGAAACA 206 60
TTGAAGGCGTCTTCGTCTGT
Zm00001d032311 GTATGGCACTATTTGGACGCG 186 60
GACCAGTGTGTGAATCAGCTTG
Zm00001d052060 TGAATCGTCTGTGCGAGGACC 164 60
CCACCTTGTGAAGTAACCGTGCT
Zm00001d012748 GGTTACTTCTTGAGGTGGTCT 208 60
GCATCTCCTTTGCCTGTGAG
Zm00001d029371 CCCGCCGAGGTCAAGGAGTT 160 60
TGCCGGTGCAGCAGGTAGGT
Zm00001d012173 ATCACCGCCACGAAGAAGGG 210 60
TAGGAACTAGGGCAAGCAAA
Zm00001d042536 GCCTTCCTTCAAAGTACAACA 220 60
CTCTATTAGCTGCAAGACCTCC
Zm00001d036608 ACCTCCGCTACTCCATCAACACCA 234 60
CCCTTGCGAACGGGTAGAACG
Zm00001d034017 TCTCCACCGTCATGATCTCCTA 200 60
AATGCCAGCAAGAATCGAAGCC
Zm00001d033649 GGAGAAGTATGGGAATCCAACG 213 60
TACCCTGCCAGCCACTCGAAG
Zm00001d028243 GCCTTCAACGCCTACTACCACG 144 60
GGTGCCGTTCATCAACGACGTC
Zm00001d005546 CAGCACGAGTGTTCTTGGGATC 199 60
GCGGTTGAGCGAAGCAGAGT
Zm00001d053960 GCTGGAGCTTTTGGTCAGTTTGC 190 60
GGTCGCACCAGATACTGAAATCT
Zm00001d002256 CGACAGAGCCATAACCACAT 172 60
AAACGAGCCTGATTTCCCTA
Zm00001d015327
(Ubiquitin)
TAAGCTGCCGATGTGCCTGCGTCG 206 60
CTGAAAGACAGAACATAATGAGCACAG

Fig. 1

Kernel phenotype of Huangnuo 2/wx1wx1o2o2 and Nuo 2/wx1wx1o2o2 (A): kernel phenotype; (B): starch content and 100-kernel weight in different years. ** indicates significant difference at the 0.01 probability level."

Table 1

Kernel components of waxy maize o2-NILs at fresh and mature stages"

时期
Stage
自交系
Inbred lines
基因型
Genotype
赖氨酸含量
Lysine content
(%)
可溶性糖含量
Soluble sugar
content (%)
总淀粉含量
Starch content
(%)
百粒重
100-kernel weight (g)
鲜食期 黄糯2 O2O2 0.35 7.70 69.60 11.98
Fresh stage Huangnuo 2 o2o2 0.54** 7.35 65.34** 10.86*
糯2 O2O2 0.42 6.76 64.11 16.06
Nuo 2 o2o2 0.58** 6.77 68.02** 15.94
成熟期 黄糯2 O2O2 0.24 4.56 68.90 15.80
Mature stage Huangnuo 2 o2o2 0.43** 5.13* 64.60** 14.41**
糯2 O2O2 0.24 4.81 69.20 26.01
Nuo 2 o2o2 0.38** 5.09 69.10 25.02

Fig. 2

Zein protein submits in waxy maize endosperm"

Fig. 3

Relative expression level of the key genes of starch synthesis pathway of waxy maize o2-NILs * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. DAP: days after pollination."

Fig. 4

KEGG enrichment in the differentially expressed genes of waxy maize o2-NILs (A): the number of DEGs of the two waxy maize o2-NILs; (B): KEGG enrichment of differentially expressed genes in Huangnuo 2/wx1wx1o2o2; (C): KEGG enrichment of differentially expressed genes in Nuo 2/wx1wx1o2o2."

Fig. 5

Analysis of differentially expressed genes in starch and sugar metabolic pathways of waxy maize o2-NILs in 20 days after pollination (A): the analysis of differentially expressed genes in starch and sugar metabolism pathways of waxy maize o2-NILs; (B): the analysis of differentially expressed genes in sugar metabolic pathways of waxy maize o2-NILs. ns: no significant difference."

Fig. 6

Relative expression level of DEGs of waxy maize o2-NILs in sugar metabolism pathway * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. DAP: days after pollination."

Table S2

DEGs related to zein protein in waxy maize o2-NILs"

基因名称
Gene ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2 FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2 FC
注释
Annotation
Zm00001d005793 ns -1.21 Prolamin 16 kD gamma zein precursor
Zm00001d048847 -1.80 -5.05 Prolamin 19 kD alpha zein z1A1_2 precursor
Zm00001d048848 ns -3.56 Prolamin 19 kD alpha zein z1A1_3 precursor
Zm00001d048849 ns -3.63 Prolamin 19 kD alpha zein z1A1_4 precursor
Zm00001d048850 -1.34 -3.67 Prolamin 19 kD alpha zein z1A1_5 precursor
Zm00001d048851 ns -3.90 Prolamin 19 kD alpha zein z1A1_6 precursor
Zm00001d048852 ns -3.76 Prolamin 19 kD alpha zein z1A1_7 precursor
Zm00001d019155 -1.36 -3.70 Prolamin 19 kD alpha zein z1B_4 precursor
Zm00001d030855 -1.33 -2.18 Prolamin 19 kD alpha zein z1D_4 precursor
newGene_32946 -1.67 -2.30 Prolamin 19 kD alpha zein z1D_2 precursor
newGene_32956 -2.52 -2.73 Prolamin 19 kD alpha zein z1D_2 precursor
newGene_17461 ns -3.84 Prolamin 19 kD alpha zein z1A2_2 precursor
newGene_33790 -2.19 -3.66 Prolamin 19 kD alpha zein z1B_1 precursor
Zm00001d048816 -3.78 -4.24 Prolamin 22 kD alpha zein z1C1_10 precursor
Zm00001d048806 -2.78 -6.63 Prolamin 22 kD alpha zein z1C1_12 precursor
Zm00001d048817 -5.20 -5.80 Prolamin 22 kD alpha zein z1C1_19 precursor
Zm00001d048812 -5.50 -5.71 Prolamin 22 kD alpha zein z1C1_7 precursor
Zm00001d048813 -2.75 -3.58 Prolamin 22 kD alpha zein z1C1_8 precursor
Zm00001d049243 -4.90 -5.63 Prolamin 22 kD alpha zein z1C2 precursor
Zm00001d048810 -3.69 -4.77 Prolamin 22 kD alpha-zein 14
Zm00001d048809 -4.49 -4.61 Prolamin 22 kD alpha-zein 4
Zm00001d048818 -4.61 -4.30 Prolamin 22 kD alpha-zein 8
Zm00001d020591 ns -1.87 Prolamin 50 kD gamma zein
Zm00001d035760 -1.70 ns Prolamin PPROL 17 precursor
Zm00001d049476 -1.36 -2.90 Z1A alpha zein protein
Zm00001d045937 ns -3.18 Zein protein
Zm00001d048807 -4.37 -4.79 Zein seed storage protein, hypothetical protein
Zm00001d019160 -2.11 -4.64 Zein seed storage protein, hypothetical protein
Zm00001d019162 -1.49 -5.11 Zein seed storage protein, hypothetical protein
Zm00001d019156 -1.22 -3.64 Zein seed storage protein, hypothetical protein
Zm00001d013100 -1.20 ns Zein-binding
Zm00001d048808 -4.10 -4.96 Kafirin PSKR2 Precursor

Table S3

DEGs related to lysine degradation in waxy maize o2-NILs"

基因名称
Gene_ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2 FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2 FC
注释
Annotation
Zm00001d020984 -2.43 -4.10 Probable sarcosine oxidase
Zm00001d003983 -2.48 ns Aldehyde dehydrogenase family 7 member A1
Zm00001d008432 ns -1.01 Putative acetyl-CoA acetyltransferase cytosolic 2
Zm00001d052079 ns -2.65 Lysine-ketoglutarate reductase/saccharopine dehydrogenase1

Table S4

DEGs related to endosperm modification in waxy maize o2-NILs"

基因名称
Gene_ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2FC
注释
Annotation
Zm00001d015504 1.70 1.70 Protein phosphatase 2C isoform gamma
Zm00001d039942 1.12 -2.28 16.9 kD class I heat shock protein 3
Zm00001d037717 2.25 -1.70 Heat shock 70 kD protein 14
Zm00001d011241 -1.58 ns 15.7 kD heat shock protein
Zm00001d039566 1.20 ns 17.5 kD class II heat shock protein
Zm00001d008841 1.61 ns 17.8 kD class II heat shock protein
Zm00001d031329 1.14 ns Catalytic/protein phosphatase type 2C
Zm00001d039933 ns -1.02 16.9 kD class I heat shock protein 1
Zm00001d039936 ns -1.54 16.9 kD class I heat shock protein 1
Zm00001d017813 ns -2.42 17.8 kD heat shock protein isoform X4
Zm00001d028557 ns -1.47 17.9 kD class I heat shock protein
Zm00001d028561 ns -2.11 17.9 kD class I heat shock protein
Zm00001d047841 ns -2.32 17.9 kD class I heat shock protein
Zm00001d028555 ns -1.64 18.1 kD class I heat shock protein
Zm00001d003554 ns -1.24 22.0 kD class IV heat shock protein precursor
Zm00001d025508 ns -1.46 22.0 kD class IV heat shock protein precursor
Zm00001d010693 ns 1.21 22.3 kD class VI heat shock protein
Zm00001d050119 ns -1.44 Activator of 90 kDa heat shock protein ATPase
Zm00001d015227 ns -2.02 Activator of Hsp90 ATPase
Zm00001d031740 ns -1.38 Activator of Hsp90 ATPase
Zm00001d015777 ns -1.90 Chloroplast small heat shock protein
Zm00001d018298 ns -1.59 Class II heat shock protein
Zm00001d039259 ns -1.30 DNAJ heat shock family protein
Zm00001d047726 ns -1.71 DnaJ protein ERDJ3A
Zea_mays_new Gene_4468 ns -1.13 Heat shock 70 kD protein
Zm00001d048073 ns -1.88 Heat shock 70 kD protein 1
Zm00001d042922 ns -1.17 Heat shock 70 kD protein-like
Zm00001d047799 ns -1.81 Heat shock cognate 70 kD protein
Zm00001d028630 ns -1.75 Heat shock cognate 70 kD protein 2
Zm00001d012420 ns -2.06 Heat shock protein 1
Zm00001d024903 ns -1.71 Heat shock protein 82
Zm00001d020898 ns -1.33 Heat shock protein 90-2
Zm00001d031332 ns -1.32 Heat shock protein 90-2
Zm00001d039935 ns -1.34 Heat shock protein 17-2
Zm00001d028408 ns -2.16 Heat shock protein26
Zm00001d030346 ns 2.95 Hsp20/alpha crystallin family protein
Zm00001d002542 ns 1.32 Probable protein phosphatase 2C
Zea_mays_new Gene_647 1.62 ns Probable protein phosphatase 2C
Zm00001d021817 -1.01 ns Probable protein phosphatase 2C
Zm00001d017643 -1.48 ns Probable protein phosphatase 2C 25
Zm00001d047807 -2.29 ns probable protein phosphatase 2C 31
Zm00001d020100 1.23 ns Probable protein phosphatase 2C 68
Zm00001d045919
-1.88
ns
Pyrophosphate-fructose 6-phosphate-Phosphotransferase subunit alpha 2
Zm00001d028615 ns -1.39 Probable protein phosphatase 2C 31
Zm00001d025055 ns -1.88 Probable protein phosphatase 2C 37
Zm00001d011195 ns -1.35 Probable protein phosphatase 2C 38
Zm00001d047847 ns -1.19 Serine/arginine-rich splicing factor SR45a
Zm00001d031325 ns -2.33 Small heat shock protein
Zm00001d032893 ns -1.78 Small heat shock-like protein
[1] Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289-311.
doi: 10.1002/(ISSN)1097-0010
[2] Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145: 279-280.
doi: 10.1126/science.145.3629.279 pmid: 14171571
[3] Paez A V, Helm J L, Zuber M S. Lysine content of opaque2 maize kernels having different phenotypes. Crop Sci, 1969, 9: 251-253.
doi: 10.2135/cropsci1969.0011183X000900020045x
[4] Gibbon B C, Larkins B A. Molecular genetic approaches to developing quality protein maize. Trends Genet, 2005, 21: 227-233.
pmid: 15797618
[5] 石德权. 优质蛋白玉米. 北京: 中国农业出版社, 1995.
Shi D Q. High Quality Protein Maize. Beijing: China Agriculture Press, 1995 (in Chinese).
[6] 曾孟潜. 我国糯质玉米的亲缘关系. 作物品种资源, 1987, (3): 4.
Zeng M Q. The affinities of glutinous maize in China. Chin Seed Industry, 1987, (3): 4 (in Chinese).
[7] Zheng H J, Wang H, Yang H, Wu J H, Shi B, Cai R, Xu Y B, Wu A Z, Luo L J. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One, 2013, 8: e66606.
doi: 10.1371/journal.pone.0066606
[8] 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71.
Zhao J R, Lu B S, Shi Y X, Xu L. Dynamics of breeding and industrial development of glutinous maize in China. J Maize Sci, 2016, 24(4): 67-71 (in Chinese with English abstract).
[9] Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet maize lines differing in physical and chemical composition. J Food Sci, 1996, 61: 253-257.
[10] Simla S, Lertrat K, Suriharn B. Carbohydrate characters of six vegetable waxy maize varieties as affected by harvest time and storage duration. Asian J Plant Sci, 2010, 9: 463-470.
doi: 10.3923/ajps.2010.463.470
[11] 杨引福, 郭强, 陈婧, 郑小亚, 蔺崇明. 中国温带糯玉米自交系遗传及品质性状分析. 西北农业学报, 2009, 29: 2213-2220.
Yang Y F, Guo Q, Chen J, Zheng X Y, Lin C M. Analysis of genetic quality traits in temperate glutinous maize inbred lines in China. Acta Bot Boreali-Occident Sin, 2009, 29: 2213-2220 (in Chinese with English abstract).
[12] Young V R, Scrimshaw N S. Significance of Dietary Protein Source in Human Nutrition:Animal and/or Plant Proteins? online edn. New York: Oxford Academic, 1998. pp 205-221.
[13] Misra P S, Jambunathan R, Mertz E T, Glover D V, Barbosa H M, McWhirter K S. Endosperm protein synthesis in maize mutants with increased lysine content. Science, 1972, 176: 1425-1427.
pmid: 17834650
[14] 张述宽, 滕辉升, 苏琪, 杨耀迥. 应用SSR辅助选择技术选育优质蛋白糯玉米自交系. 广西农业科学, 2009, 40: 1279-1283.
Zhang S K, Teng H S, Su Q, Yang Y J. Application of SSR-assisted selection technology to select high-quality protein glutinous maize inbred lines. J Guangxi Agric Sci, 2009, 40: 1279-1283 (in Chinese with English abstract).
[15] Sinkangam B, Stamp P, Srinives P, Jompuk P, Mongkol W, Porniyom A, Dang N C, Jompuk C. Integration of quality protein in waxy maize by means of simple sequence repeat markers. Crop Sci, 2011, 51: 2499-2504.
doi: 10.2135/cropsci2011.05.0271
[16] Zhou Z Q, Song L Y, Zhang X X, Li X H, Yan N, Xia R P, Zhu H, Weng J F, Hao Z F, Zhang D G, Yong H J, Li M S, Zhang S H. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One, 2016, 11: e0161924.
doi: 10.1371/journal.pone.0161924
[17] Dang N C, Munsch M, Aulinger I, Renlai W, Stamp P. Inducer line generated double haploid seeds for combined waxy and opaque 2 grain quality in subtropical maize (Zea may L.). Euphytica, 2012, 183: 153-160.
doi: 10.1007/s10681-011-0423-0
[18] Jia H W, Nettleton D, Peterson J M, Vazquez-Carrillo G, Jannink J L, Scott M P. Comparison of transcript profiles in wild-type and o2 maize endosperm in different genetic backgrounds. Crop Sci, 2007, 47(S1): 45-59.
doi: 10.2135/cropsci2006.03.0207
[19] Frizzi A, Caldo R A, Morrell J A, Wang M, Lutfiyya L L, Brown W E, Malvar T M, Huang S S. Compositional and transcriptional analyses of reduced zein kernels derived from the opaque2 mutation and RNAi suppression. Plant Mol Biol, 2010, 73: 569-585.
doi: 10.1007/s11103-010-9644-1
[20] Jia M, Wu H, Clay K L, Jung R, Larkins B A, Gibbon B C. Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2mutant by transcriptional and proteomic analysis. BMC Plant Biol, 2013, 13: 60.
doi: 10.1186/1471-2229-13-60 pmid: 23586588
[21] Li C B, Qiao Z Y, Qi W W, Wang Q, Yuan Y, Yang X, Tang Y P, Mei B, Lyu Y D, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell, 2015, 27: 532-545.
doi: 10.1105/tpc.114.134858
[22] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
doi: 10.1073/pnas.1613721113
[23] Zhan J P, Li G S, Ryu C-H, Ma C, Zhang S S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X F, Yadegari R. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell, 2018, 30: 2425-2446.
doi: 10.1105/tpc.18.00392
[24] 陈亮, 张德贵, 史振声, 赵刚, 白丽, 张世煌, 李明顺. Opaque- 2突变基因(o2)对玉米产量和产量配合力的影响. 玉米科学, 2011, 19(1): 8-13.
Chen L, Zhang D G, Shi Z S, Zhao G, Bai L, Zhang S H, Li M S. Effect of Opaque-2 mutant gene (o2) on yield and yield fitness of maize. J Maize Sci, 2011, 19(1): 8-13 (in Chinese with English abstract).
[25] 宋丽雅, 陈亮, 何聪芬, 赵刚, 白鹏飞, 陈岩, 常驰. Opaque-2突变基因对玉米组合品质的影响. 安徽农业科学, 2012, 40: 9607-9609.
Song L Y, Chen L, He C F, Zhao G, Bai P F, Chen Y, Chang C. Effect of Opaque-2 mutant gene on the quality of maize combinations. J Anhui Agric Sci, 2012, 40: 9607-9609 (in Chinese with English abstract).
[26] 周昱婕, 韩洁楠, 王美娟, 刘晓丽, 李明顺. Opaque2基因对糯玉米子粒品质的影响分析. 玉米科学, 2021, 29(2): 29-34.
Zhou Y J, Han J N, Wang M J, Liu X L, Li M S. Analysis of the effect of Opaque2 gene on kernel quality of glutinous maize. J Maize Sci, 2021, 29(2): 29-34 (in Chinese with English abstract).
[27] 刘晓丽, 韩洁楠, 李冉, 郭增辉, 张德贵, 李明顺. Opaque2对糯玉米籽粒食味和营养品质的影响分析. 玉米科学, 2023, 31(4): 52-58.
Liu X L, Han J N, Li R, Guo Z H, Zhang D G, Li M S. Analysis of the effect of opaque2 on flavour and nutritional quality of glutinous maize kernels. J Maize Sci, 2023, 31(4): 52-58 (in Chinese with English abstract).
[28] Wang W, Dai Y, Wang M C, Yang W P, Zhao D G. Transcriptome dynamics of double recessive mutant, o2o2o16o16, reveals the transcriptional mechanisms in the increase of its lysine and tryptophan content in maize. Genes, 2019, 10: 316.
doi: 10.3390/genes10040316
[29] 谭华, 邹成林, 吴永升, 郑德波, 莫润秀, 黄爱花, 韦新兴, 蒋维萍, 韦慧, 黄开健. 不同遗传背景普通玉米种质导入opaque-2基因效应探讨. 广东农业科学, 2015, 42(23): 127-132.
Tan H, Zou C L, Wu Y S, Zheng D B, Mo R X, Huang A H, Wei X X, Jiang W P, Wei H, Huang K J. Exploration of the effect of introducing opaque-2 gene in common maize germplasm with different genetic backgrounds. Guangdong Agric Sci, 2015, 42(23): 127-132 (in Chinese with English abstract).
[30] Prioul J L, Mechin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards K J. A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J, 2008, 6: 855-869.
pmid: 19548342
[31] Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 pmid: 25037214
[32] Ji C, Xu L N, Li Y J, Fu Y X, Li S, Wang Q, Zeng X, Zhang Z Q, Zhang Z Y, Wang W Q, Wang J C, Wu Y R. The O2-ZmGRAS11transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Mol Plant, 2022, 15: 468-487.
doi: 10.1016/j.molp.2021.11.013
[33] Li N, Zhang S J, Zhao Y J, Li B, Zhang J R. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011, 233: 241-250.
doi: 10.1007/s00425-010-1296-5 pmid: 20978801
[34] Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205
[35] Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617
[36] Cobb B G, Hannah L C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol, 1988, 88: 1219-1221.
doi: 10.1104/pp.88.4.1219 pmid: 16666447
[37] Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907.
doi: 10.1111/pbi.v18.9
[38] Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith A M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol, 1996, 112: 779-785.
doi: 10.1104/pp.112.2.779 pmid: 8883389
[39] Jennings P H, McCombs C L. Effects of sugary-1 and shrunken-2 loci on kernel carbohydrate contents, phosphorylase and branching enzyme activities during maize kernel ontogeny. Phytochemistry, 1969, 8: 1357-1363.
doi: 10.1016/S0031-9422(00)85898-7
[40] Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891.
doi: 10.1104/pp.108.116244 pmid: 18263778
[41] Paul M J, Watson A, Griffiths C A. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans, 2020, 48: 2127-2137.
doi: 10.1042/BST20200286
[42] Meitzel T, Radchuk R, McAdam E L, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross J J, Lunn J E, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol, 2021, 229: 1553-1565.
doi: 10.1111/nph.v229.3
[43] Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA, 2005, 102: 11118-11123.
doi: 10.1073/pnas.0503410102 pmid: 16046541
[44] Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617
[45] Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn J E, Clément C. Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta, 2012, 236: 355-369.
doi: 10.1007/s00425-012-1611-4 pmid: 22367062
[46] Leyman B, Dijck P V, Thevelein J M. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci, 2001, 6: 510-513.
doi: 10.1016/s1360-1385(01)02125-2 pmid: 11701378
[47] Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol, 2005, 46: 1103-1115.
pmid: 15890680
[48] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639
[49] German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer A A, Granot D. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 2003, 34: 837-846.
doi: 10.1046/j.1365-313x.2003.01765.x pmid: 12795703
[50] Urbanowicz B R, Bennett A B, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason S J, Patterson S E, Shoseyov O, Teeri T T, Rose J K. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol, 2007, 144: 1693-1696.
pmid: 17687051
[51] 潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展. 食品科学, 2006, 27: 803-807.
Pan L H, Luo J P. Progress of research and application of β-glucosidase. Food Sci, 2006, 27: 803-807 (in Chinese with English abstract).
[52] 陈凯莉, 许轲, 张贤聪, 王亚楠, 汪志辉, 王迅. 果实中果胶代谢相关酶基因的研究进展. 园艺学报, 2017, 44: 2008-2014.
doi: 10.16420/j.issn.0513-353x.2016-0846
Chen K L, Xu K, Zhang X C, Wang Y N, Wang Z H, Wang X. Progress of pectin metabolism-related enzyme genes in fruits. Acta Hortic Sin, 2017, 44: 2008-2014 (in Chinese with English abstract).
[53] Godoy F D, Bermúdez L, Lira B S, Souza A P D, Elbl P, Dcmarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, FernieA R, Carrari F, Rossi M. Galacturonosyl transferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2013, 64: 2449-2466.
doi: 10.1093/jxb/ert106
[54] 傅海, 赵佳, 李伟, 孙科, 王希信. 果胶酶研究进展及应用. 生物化工, 2020, 6(5): 148-153.
Fu H, Zhao J, Li W, Sun K, Wang X X. Research progress and application of pectinase. Biochemistry, 2020, 6(5): 148-153 (in Chinese with English abstract).
[55] Segonne S M, Bruneau M, Celton J M, Gall S L, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Penou J P. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol, 2014, 14: 375.
doi: 10.1186/s12870-014-0375-3 pmid: 25551767
[56] Hennen-Bierwagen T A, Lin Q, Grimaud F, Planchot V, Keeling PL, James M G, Myers A M. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol, 2009, 149: 1541-1559.
doi: 10.1104/pp.109.135293 pmid: 19168640
[57] Wang W, Niu S Z, Dai Y, Wang M C, Li Y, Yang W P, Zhao D G. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-seq. Sci Rep, 2019, 9: 12265.
doi: 10.1038/s41598-019-48478-6 pmid: 31439855
[58] Lopes M A, Takasaki K, Bostwick D E, Helentjaris T, Larkins B A. Identification of two opaque2 modifier loci in quality protein maize. Mol Gen Genet, 1995, 247: 603-613.
doi: 10.1007/BF00290352
[59] Holding D R, Hunter B G, Chung T, Gibbo B C, Ford C F, Bharti A K, Messing J, Hamaker B R, Larkins B A. Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet, 2008, 117: 157-170.
doi: 10.1007/s00122-008-0762-y pmid: 18427771
[60] Holding D R, Hunter B G, Klingler J P, Wu S, Guo X M, Gibbon B C, Wu R L, Schulze J M, Jung R, Larkins B A. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred. Theor Appl Genet, 2011, 122: 783-794.
doi: 10.1007/s00122-010-1486-3 pmid: 21076810
[61] Li C S, Xiang X L, Huang Y C, Zhou Y, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q, Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun, 2020, 11: 17.
doi: 10.1038/s41467-019-14023-2 pmid: 31911615
[62] Guo X M, Ronhovde K, Yuan L L, Yao B, Soundararajan M P, Elthon T, Zhang C, Holding D R. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize. Plant Physiol, 2012, 158: 917-929.
doi: 10.1104/pp.111.191163
[63] Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007, 48: 1036-1049.
doi: 10.1093/pcp/pcm069
[64] Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. Plant Signal Behav, 2014, 9: e28194.
doi: 10.4161/psb.28194
[1] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[2] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[3] NAN Jin-Sheng, AN Jiang-Hong, CHAI Ming-Na, JIANG Yu-Lian, ZHU Zhi-Qiang, YANG Yan, HAN Bing. Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2552-2561.
[4] WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978.
[5] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[6] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[7] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[8] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[9] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[10] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[11] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[12] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[13] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[14] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[15] YANG Fan, ZHONG Xiao-Yuan, LI Qiu-Ping, LI Shu-Xian, LI Wu, ZHOU Tao, LI Bo, YUAN Yu-Jie, DENG Fei, CHEN Yong, REN Wan-Jun. Effects of delayed sowing and planting date on starch RVA profiles of different indica hybrid rice in the sub-suitable region of ratoon rice [J]. Acta Agronomica Sinica, 2021, 47(4): 701-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .