Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1207-1222.doi: 10.3724/SP.J.1006.2024.33046
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HAN Jie-Nan1(), ZHANG Ze1,2, LIU Xiao-Li1, LI Ran1, SHANG-GUAN Xiao-Chuan1,2, ZHOU Ting-Fang1,2, PAN Yue1, HAO Zhuan-Fang1, WENG Jian-Feng1, YONG Hong-Jun1, ZHOU Zhi-Qiang1, XU Jing-Yu2, LI Xin-Hai1,2, LI Ming-Shun1,*(
)
[1] |
Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289-311.
doi: 10.1002/(ISSN)1097-0010 |
[2] |
Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145: 279-280.
doi: 10.1126/science.145.3629.279 pmid: 14171571 |
[3] |
Paez A V, Helm J L, Zuber M S. Lysine content of opaque2 maize kernels having different phenotypes. Crop Sci, 1969, 9: 251-253.
doi: 10.2135/cropsci1969.0011183X000900020045x |
[4] |
Gibbon B C, Larkins B A. Molecular genetic approaches to developing quality protein maize. Trends Genet, 2005, 21: 227-233.
pmid: 15797618 |
[5] | 石德权. 优质蛋白玉米. 北京: 中国农业出版社, 1995. |
Shi D Q. High Quality Protein Maize. Beijing: China Agriculture Press, 1995 (in Chinese). | |
[6] | 曾孟潜. 我国糯质玉米的亲缘关系. 作物品种资源, 1987, (3): 4. |
Zeng M Q. The affinities of glutinous maize in China. Chin Seed Industry, 1987, (3): 4 (in Chinese). | |
[7] |
Zheng H J, Wang H, Yang H, Wu J H, Shi B, Cai R, Xu Y B, Wu A Z, Luo L J. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One, 2013, 8: e66606.
doi: 10.1371/journal.pone.0066606 |
[8] | 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71. |
Zhao J R, Lu B S, Shi Y X, Xu L. Dynamics of breeding and industrial development of glutinous maize in China. J Maize Sci, 2016, 24(4): 67-71 (in Chinese with English abstract). | |
[9] | Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet maize lines differing in physical and chemical composition. J Food Sci, 1996, 61: 253-257. |
[10] |
Simla S, Lertrat K, Suriharn B. Carbohydrate characters of six vegetable waxy maize varieties as affected by harvest time and storage duration. Asian J Plant Sci, 2010, 9: 463-470.
doi: 10.3923/ajps.2010.463.470 |
[11] | 杨引福, 郭强, 陈婧, 郑小亚, 蔺崇明. 中国温带糯玉米自交系遗传及品质性状分析. 西北农业学报, 2009, 29: 2213-2220. |
Yang Y F, Guo Q, Chen J, Zheng X Y, Lin C M. Analysis of genetic quality traits in temperate glutinous maize inbred lines in China. Acta Bot Boreali-Occident Sin, 2009, 29: 2213-2220 (in Chinese with English abstract). | |
[12] | Young V R, Scrimshaw N S. Significance of Dietary Protein Source in Human Nutrition:Animal and/or Plant Proteins? online edn. New York: Oxford Academic, 1998. pp 205-221. |
[13] |
Misra P S, Jambunathan R, Mertz E T, Glover D V, Barbosa H M, McWhirter K S. Endosperm protein synthesis in maize mutants with increased lysine content. Science, 1972, 176: 1425-1427.
pmid: 17834650 |
[14] | 张述宽, 滕辉升, 苏琪, 杨耀迥. 应用SSR辅助选择技术选育优质蛋白糯玉米自交系. 广西农业科学, 2009, 40: 1279-1283. |
Zhang S K, Teng H S, Su Q, Yang Y J. Application of SSR-assisted selection technology to select high-quality protein glutinous maize inbred lines. J Guangxi Agric Sci, 2009, 40: 1279-1283 (in Chinese with English abstract). | |
[15] |
Sinkangam B, Stamp P, Srinives P, Jompuk P, Mongkol W, Porniyom A, Dang N C, Jompuk C. Integration of quality protein in waxy maize by means of simple sequence repeat markers. Crop Sci, 2011, 51: 2499-2504.
doi: 10.2135/cropsci2011.05.0271 |
[16] |
Zhou Z Q, Song L Y, Zhang X X, Li X H, Yan N, Xia R P, Zhu H, Weng J F, Hao Z F, Zhang D G, Yong H J, Li M S, Zhang S H. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One, 2016, 11: e0161924.
doi: 10.1371/journal.pone.0161924 |
[17] |
Dang N C, Munsch M, Aulinger I, Renlai W, Stamp P. Inducer line generated double haploid seeds for combined waxy and opaque 2 grain quality in subtropical maize (Zea may L.). Euphytica, 2012, 183: 153-160.
doi: 10.1007/s10681-011-0423-0 |
[18] |
Jia H W, Nettleton D, Peterson J M, Vazquez-Carrillo G, Jannink J L, Scott M P. Comparison of transcript profiles in wild-type and o2 maize endosperm in different genetic backgrounds. Crop Sci, 2007, 47(S1): 45-59.
doi: 10.2135/cropsci2006.03.0207 |
[19] |
Frizzi A, Caldo R A, Morrell J A, Wang M, Lutfiyya L L, Brown W E, Malvar T M, Huang S S. Compositional and transcriptional analyses of reduced zein kernels derived from the opaque2 mutation and RNAi suppression. Plant Mol Biol, 2010, 73: 569-585.
doi: 10.1007/s11103-010-9644-1 |
[20] |
Jia M, Wu H, Clay K L, Jung R, Larkins B A, Gibbon B C. Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2mutant by transcriptional and proteomic analysis. BMC Plant Biol, 2013, 13: 60.
doi: 10.1186/1471-2229-13-60 pmid: 23586588 |
[21] |
Li C B, Qiao Z Y, Qi W W, Wang Q, Yuan Y, Yang X, Tang Y P, Mei B, Lyu Y D, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell, 2015, 27: 532-545.
doi: 10.1105/tpc.114.134858 |
[22] |
Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
doi: 10.1073/pnas.1613721113 |
[23] |
Zhan J P, Li G S, Ryu C-H, Ma C, Zhang S S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X F, Yadegari R. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell, 2018, 30: 2425-2446.
doi: 10.1105/tpc.18.00392 |
[24] | 陈亮, 张德贵, 史振声, 赵刚, 白丽, 张世煌, 李明顺. Opaque- 2突变基因(o2)对玉米产量和产量配合力的影响. 玉米科学, 2011, 19(1): 8-13. |
Chen L, Zhang D G, Shi Z S, Zhao G, Bai L, Zhang S H, Li M S. Effect of Opaque-2 mutant gene (o2) on yield and yield fitness of maize. J Maize Sci, 2011, 19(1): 8-13 (in Chinese with English abstract). | |
[25] | 宋丽雅, 陈亮, 何聪芬, 赵刚, 白鹏飞, 陈岩, 常驰. Opaque-2突变基因对玉米组合品质的影响. 安徽农业科学, 2012, 40: 9607-9609. |
Song L Y, Chen L, He C F, Zhao G, Bai P F, Chen Y, Chang C. Effect of Opaque-2 mutant gene on the quality of maize combinations. J Anhui Agric Sci, 2012, 40: 9607-9609 (in Chinese with English abstract). | |
[26] | 周昱婕, 韩洁楠, 王美娟, 刘晓丽, 李明顺. Opaque2基因对糯玉米子粒品质的影响分析. 玉米科学, 2021, 29(2): 29-34. |
Zhou Y J, Han J N, Wang M J, Liu X L, Li M S. Analysis of the effect of Opaque2 gene on kernel quality of glutinous maize. J Maize Sci, 2021, 29(2): 29-34 (in Chinese with English abstract). | |
[27] | 刘晓丽, 韩洁楠, 李冉, 郭增辉, 张德贵, 李明顺. Opaque2对糯玉米籽粒食味和营养品质的影响分析. 玉米科学, 2023, 31(4): 52-58. |
Liu X L, Han J N, Li R, Guo Z H, Zhang D G, Li M S. Analysis of the effect of opaque2 on flavour and nutritional quality of glutinous maize kernels. J Maize Sci, 2023, 31(4): 52-58 (in Chinese with English abstract). | |
[28] |
Wang W, Dai Y, Wang M C, Yang W P, Zhao D G. Transcriptome dynamics of double recessive mutant, o2o2o16o16, reveals the transcriptional mechanisms in the increase of its lysine and tryptophan content in maize. Genes, 2019, 10: 316.
doi: 10.3390/genes10040316 |
[29] | 谭华, 邹成林, 吴永升, 郑德波, 莫润秀, 黄爱花, 韦新兴, 蒋维萍, 韦慧, 黄开健. 不同遗传背景普通玉米种质导入opaque-2基因效应探讨. 广东农业科学, 2015, 42(23): 127-132. |
Tan H, Zou C L, Wu Y S, Zheng D B, Mo R X, Huang A H, Wei X X, Jiang W P, Wei H, Huang K J. Exploration of the effect of introducing opaque-2 gene in common maize germplasm with different genetic backgrounds. Guangdong Agric Sci, 2015, 42(23): 127-132 (in Chinese with English abstract). | |
[30] |
Prioul J L, Mechin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards K J. A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J, 2008, 6: 855-869.
pmid: 19548342 |
[31] |
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 pmid: 25037214 |
[32] |
Ji C, Xu L N, Li Y J, Fu Y X, Li S, Wang Q, Zeng X, Zhang Z Q, Zhang Z Y, Wang W Q, Wang J C, Wu Y R. The O2-ZmGRAS11transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Mol Plant, 2022, 15: 468-487.
doi: 10.1016/j.molp.2021.11.013 |
[33] |
Li N, Zhang S J, Zhao Y J, Li B, Zhang J R. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011, 233: 241-250.
doi: 10.1007/s00425-010-1296-5 pmid: 20978801 |
[34] |
Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205 |
[35] |
Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617 |
[36] |
Cobb B G, Hannah L C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol, 1988, 88: 1219-1221.
doi: 10.1104/pp.88.4.1219 pmid: 16666447 |
[37] |
Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907.
doi: 10.1111/pbi.v18.9 |
[38] |
Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith A M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol, 1996, 112: 779-785.
doi: 10.1104/pp.112.2.779 pmid: 8883389 |
[39] |
Jennings P H, McCombs C L. Effects of sugary-1 and shrunken-2 loci on kernel carbohydrate contents, phosphorylase and branching enzyme activities during maize kernel ontogeny. Phytochemistry, 1969, 8: 1357-1363.
doi: 10.1016/S0031-9422(00)85898-7 |
[40] |
Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891.
doi: 10.1104/pp.108.116244 pmid: 18263778 |
[41] |
Paul M J, Watson A, Griffiths C A. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans, 2020, 48: 2127-2137.
doi: 10.1042/BST20200286 |
[42] |
Meitzel T, Radchuk R, McAdam E L, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross J J, Lunn J E, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol, 2021, 229: 1553-1565.
doi: 10.1111/nph.v229.3 |
[43] |
Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA, 2005, 102: 11118-11123.
doi: 10.1073/pnas.0503410102 pmid: 16046541 |
[44] |
Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617 |
[45] |
Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn J E, Clément C. Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta, 2012, 236: 355-369.
doi: 10.1007/s00425-012-1611-4 pmid: 22367062 |
[46] |
Leyman B, Dijck P V, Thevelein J M. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci, 2001, 6: 510-513.
doi: 10.1016/s1360-1385(01)02125-2 pmid: 11701378 |
[47] |
Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol, 2005, 46: 1103-1115.
pmid: 15890680 |
[48] |
Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639 |
[49] |
German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer A A, Granot D. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 2003, 34: 837-846.
doi: 10.1046/j.1365-313x.2003.01765.x pmid: 12795703 |
[50] |
Urbanowicz B R, Bennett A B, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason S J, Patterson S E, Shoseyov O, Teeri T T, Rose J K. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol, 2007, 144: 1693-1696.
pmid: 17687051 |
[51] | 潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展. 食品科学, 2006, 27: 803-807. |
Pan L H, Luo J P. Progress of research and application of β-glucosidase. Food Sci, 2006, 27: 803-807 (in Chinese with English abstract). | |
[52] |
陈凯莉, 许轲, 张贤聪, 王亚楠, 汪志辉, 王迅. 果实中果胶代谢相关酶基因的研究进展. 园艺学报, 2017, 44: 2008-2014.
doi: 10.16420/j.issn.0513-353x.2016-0846 |
Chen K L, Xu K, Zhang X C, Wang Y N, Wang Z H, Wang X. Progress of pectin metabolism-related enzyme genes in fruits. Acta Hortic Sin, 2017, 44: 2008-2014 (in Chinese with English abstract). | |
[53] |
Godoy F D, Bermúdez L, Lira B S, Souza A P D, Elbl P, Dcmarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, FernieA R, Carrari F, Rossi M. Galacturonosyl transferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2013, 64: 2449-2466.
doi: 10.1093/jxb/ert106 |
[54] | 傅海, 赵佳, 李伟, 孙科, 王希信. 果胶酶研究进展及应用. 生物化工, 2020, 6(5): 148-153. |
Fu H, Zhao J, Li W, Sun K, Wang X X. Research progress and application of pectinase. Biochemistry, 2020, 6(5): 148-153 (in Chinese with English abstract). | |
[55] |
Segonne S M, Bruneau M, Celton J M, Gall S L, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Penou J P. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol, 2014, 14: 375.
doi: 10.1186/s12870-014-0375-3 pmid: 25551767 |
[56] |
Hennen-Bierwagen T A, Lin Q, Grimaud F, Planchot V, Keeling PL, James M G, Myers A M. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol, 2009, 149: 1541-1559.
doi: 10.1104/pp.109.135293 pmid: 19168640 |
[57] |
Wang W, Niu S Z, Dai Y, Wang M C, Li Y, Yang W P, Zhao D G. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-seq. Sci Rep, 2019, 9: 12265.
doi: 10.1038/s41598-019-48478-6 pmid: 31439855 |
[58] |
Lopes M A, Takasaki K, Bostwick D E, Helentjaris T, Larkins B A. Identification of two opaque2 modifier loci in quality protein maize. Mol Gen Genet, 1995, 247: 603-613.
doi: 10.1007/BF00290352 |
[59] |
Holding D R, Hunter B G, Chung T, Gibbo B C, Ford C F, Bharti A K, Messing J, Hamaker B R, Larkins B A. Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet, 2008, 117: 157-170.
doi: 10.1007/s00122-008-0762-y pmid: 18427771 |
[60] |
Holding D R, Hunter B G, Klingler J P, Wu S, Guo X M, Gibbon B C, Wu R L, Schulze J M, Jung R, Larkins B A. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred. Theor Appl Genet, 2011, 122: 783-794.
doi: 10.1007/s00122-010-1486-3 pmid: 21076810 |
[61] |
Li C S, Xiang X L, Huang Y C, Zhou Y, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q, Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun, 2020, 11: 17.
doi: 10.1038/s41467-019-14023-2 pmid: 31911615 |
[62] |
Guo X M, Ronhovde K, Yuan L L, Yao B, Soundararajan M P, Elthon T, Zhang C, Holding D R. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize. Plant Physiol, 2012, 158: 917-929.
doi: 10.1104/pp.111.191163 |
[63] |
Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007, 48: 1036-1049.
doi: 10.1093/pcp/pcm069 |
[64] |
Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. Plant Signal Behav, 2014, 9: e28194.
doi: 10.4161/psb.28194 |
[1] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[2] | LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064. |
[3] | SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186. |
[4] | NAN Jin-Sheng, AN Jiang-Hong, CHAI Ming-Na, JIANG Yu-Lian, ZHU Zhi-Qiang, YANG Yan, HAN Bing. Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2552-2561. |
[5] | WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978. |
[6] | GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454. |
[7] | WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101. |
[8] | GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832. |
[9] | LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646. |
[10] | DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653. |
[11] | WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152. |
[12] | WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139. |
[13] | JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210. |
[14] | LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796. |
[15] | CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550. |
|