Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 1-15.doi: 10.3724/SP.J.1006.2024.34012

• REVIEW •     Next Articles

Research progress of seed dormancy and germination regulation

SONG Song-Quan1,3,*(), TANG Cui-Fang2,3, LEI Hua-Ping3, JIANG Xiao-Cheng2, WANG Wei-Qing1, CHENG Hong-Yan1   

  1. 1Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
    3Nanling Research Institute for Modern Seed Industry, Xiangnan University, Chenzhou 423099, Hunan, China
  • Received:2022-12-18 Accepted:2023-09-08 Online:2024-01-12 Published:2023-09-08
  • Contact: *E-mail: sqsong2019@163.com
  • Supported by:
    National Key Technology Support Program of China(2012BAC01B05);Provincial Special Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone Construction(2022sfq06);Chenzhou Municipal People’s Government and Xiangnan University Talent Project

Abstract:

Dormancy enables plant seeds to time germination until environmental conditions become favorable for seedling survival and growth. The dormancy characteristics of seeds are of important ecological adaptive significance and notable agricultural value. Phytohormone abscisic acid (ABA) and gibberellin (GA) are the key factors for seed dormancy and germination. Mature seeds in dormancy state contain high levels of ABA and low levels of GA. ABA induces and maintains seed dormancy, while GA antagonizes ABA and promotes seed germination. DELAY OF GERMINATION-1 (DOG1) is a major regulator of seed dormancy and had a synergistic effect with ABA to delay germination. DOG1 enhances ABA signal transduction by combining with PP2C ABA hypersensitive germination (AHG1/AHG3), and inhibits the action of AHG1 to increase ABA sensitivity and impose seed dormancy. Imprinted genes are regulated by epigenetic mechanisms before and after fertilization, and are closely related to the establishment and release of seed dormancy. In recent years, remarkable progress has been made in the regulation of seed dormancy. In the present paper, we reviewed the effects of phytohormones ABA and GA on seed dormancy and germination, the action mechanism regulating seed dormancy by DOG1, and the epigenetic regulation of seed dormancy and germination. In addition, we also propose some scientific issues that need to be further investigated in this field to provide some information for understanding the molecular mechanism of seed dormancy and germination, breeding in anti-preharvest sprouting in crop plants, and promoting the germination of dormant seeds.

Key words: DOG1, epigenetic, molecular mechanism, phytohormone, seed dormancy

Fig. 1

Regulatory phytohormone networks in seed dormancy and germination Three major phytohormones, including abscisic acid (ABA), gibberellin (GA), and auxin, are key players in seed dormancy and germination. Mature seeds are dormant and contain a high level of ABA and a low level of GA. Several transcription factors (ABI4, DDF1, OsAP2-39, AP2, and CHO1) are involved at seed dormancy stage by positively regulating (+) the accumulation of ABA and decreasing GA content. While seed dormancy is broken, the seed becomes non-dormant and the initiation of germination can start. At this stage, the ABA/GA balance is kept by positive and negative regulation signals of almost all other phytohormones, including ethylene (ET), brassinosteroid (BR), jasmonic acid (JA), salicylic acid (SA), cytokinins (CTK), and strigolactones (SL). Transcription factors, including ARF, MYB96, ABI3, ABI4, and ABI5, regulate ABA biosynthesis by interacting with CYP707A1 and CYP707A2, while GA-negative regulation (-) is ensured by DELLA genes. The balance is constantly maintained until the seed emergence step. These information are from Sohn et al.[8]"

Fig. 2

A model for the transcriptional regulation of DOG1 gene (promotor in red; coding region in green) to induce dormancy in Arabidopsis thaliana seeds Downstream of the GBL1 cis-element is INDEL (insertion-deletion), which is a 285 bp sequence. INDEL is present in DOG1 promoter of Ler-0 accession (weakly dormant). However, INDEL is absent in Cvi-0 ecotype (strong dormant). INDEL directly affects the ability of bZIP67 to trans-activate DOG1 in vivo and may explain the observed variation in DOG1 transcript levels and consequently dormancy between ecotypes. Such natural allelic variation in DOG1 coupled with DOG1 expression plasticity confers substantial adaptive significance in the field, where seasonal environmental factors can vary greatly, and the optimal timing of seed germination is primordial. ETR1: ethylene response-1; DRE/CRT: dehydration-responsive element/C-repeat; TPL1: topless-1; ERF12: ethylene responsive transcription factor-12; GBL1 and GBL2: G-box-like-1 and -2; SOM: somnus. These information are from Carrillo-Barral et al. [17]"

Fig. 3

Model depicting how different combinations of epigenetic modifications on parental alleles affect gene expression in the endosperm and control seed dormancy Genes whose maternal alleles are suppressed by FIS-PRC2-mediated H3K27me3 encode ethylene-pathway genes that are necessary to induce germination. The paternal alleles of those genes are likely suppressed by CHHm established by the non-canonical RdDM pathway. Cold stress-inducible AGO6 may also target maternal alleles and apply cold stress-responsive CHHm by the non-canonical RdDM pathway. REF6 binds to the CTCTGYTY motif (Y = C or T) to activate the target genes. In dormant seeds, the maternal alleles are activated by the H3K27me3 demethylase REF6 and the genes show maternally biased expression patterns. In non-dormant seeds, the genes are biallelically expressed, likely because the RdDM pathway is specifically active under dormancy-inducing conditions. FIS-PRC2, SUVH family proteins, and CMT3 establish H3K27me3, H3K9me2, and CHGm, respectively, on maternal alleles of PEGs. Because CHGm on the REF6-binding site inhibits binding activity of REF6, the maternal alleles are continuously silenced, and the genes reveal paternally biased gene expression patterns throughout endosperm development including germination. ABI3, an important transcription factor establishing seed dormancy belongs to this category. Genes with single H3K9me2 on the maternal alleles are fully silenced throughout development. These maternal-specific epigenetic modifications are detected in developing endosperm at 4 days after pollination. These information are from Sato and K?hler[2]."

[1] Bewley J D, Bradford K J, Hilhorst H W M, Konogaki H. Seed:Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013.
[2] Sato H, Köhler C. Genomic imprinting regulates establishment and release of seed dormancy. Curr Opin Plant Biol, 2022, 69: 102264.
doi: 10.1016/j.pbi.2022.102264
[3] Ashikawa I, Mori M, Nakamura S, Abe F A. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res, 2014, 23: 621-629.
doi: 10.1007/s11248-014-9800-5 pmid: 24752830
[4] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[5] Nonogaki H. Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol, 2019, 61: 541-563.
doi: 10.1111/jipb.12762
[6] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[7] Iwasaki M, Penfield S, Lopez-Molina L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol, 2022, 73: 355-378.
doi: 10.1146/annurev-arplant-102820-090750 pmid: 35138879
[8] Sohn S I, Pandian S, Kumar T S, Zoclanclounon Y A B, Muthuramalingam P, Shilpha J, Satish L, Ramesh M. Seed dormancy and pre-harvest sprouting in rice—an updated overview. Int J Mol Sci, 2021, 22: 11804.
doi: 10.3390/ijms222111804
[9] Nikolaeva M G, Rasumova M V, Gladkova V N. Reference Book on Dormant Seed Germination. Leningrad: Nauka, 1985.
[10] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2004, 14: 1-16.
doi: 10.1079/SSR2003150
[11] Baskin J M, Baskin C C. Seeds:Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Amsterdam: Academic Press, 2014.
[12] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.x pmid: 16866955
[13] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15: 281-307.
doi: 10.1079/SSR2005218
[14] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10
[15] Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci, 2021, 22: 5069.
doi: 10.3390/ijms22105069
[16] Matilla A J. Seed dormancy—molecular control of its induction and alleviation. Plants, 2020, 9: 1402.
doi: 10.3390/plants9101402
[17] Carrillo-Barral N, Rodríguez-Gacio M C, Matilla A J. Delay of germination-1 (DOG1): a key to understanding seed dormancy. Plants, 2020, 9: 480.
doi: 10.3390/plants9040480
[18] Nonogaki H. A repressor complex silencing ABA signaling in seeds? J Exp Bot, 2020, 71: 2847-2853.
doi: 10.1093/jxb/eraa062 pmid: 32004374
[19] Guan S X, Li Y S, Zeng W Q, Lin J W, Zhan H, Han X Y, Zhang X L, Lu X J. A gibberellin, abscisic acid, and DELAY OF GERMINATION 1 interaction network regulates critical developmental transitions in model plant Arabidopsis thaliana: a review. Appl Ecol Environ Res, 2021, 19: 4699-4720.
doi: 10.15666/aeer
[20] Nelson S K, Kanno Y, Seo M, Steber C M. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. Front Plant Sci, 2023, 14: 1145414.
[21] Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams S R, Kamiya Y, Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol, 2010, 51: 1988-2001.
doi: 10.1093/pcp/pcq158 pmid: 20959378
[22] Liu S J, Xu H H, Wang W Q, Li N, Wang W P, Møller I M, Song S Q. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol Plant, 2015, 154: 142-161.
[23] Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q. Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012, 66: 191-202.
doi: 10.1007/s10725-011-9643-5
[24] 邓志军, 宋松泉. ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用. 云南植物研究, 2008, 30: 440-446.
Deng Z J, Song S Q. Inhibitory effect of ABA on seed germination of Dalbergia fusca and antagonism of other phytohormones to ABA. Acta Bot Yunnanica, 2008, 30: 440-446 (in English with Chinese abstract).
[25] Xu F, Tang J U, Wang S X, Cheng X, Wang H R, Ou S J, Gao S P, Li B S, Qian Y W, Gao C X, Chu C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet, 2022, 54: 1972-1982.
doi: 10.1038/s41588-022-01240-7 pmid: 36471073
[26] Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570
[27] Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19: 32-45.
doi: 10.1105/tpc.106.044602 pmid: 17220201
[28] Ariizumi T, Hauvermale A L, Nelson S K, Hanada A, Yamaguchi S, Steber C M. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol, 2013, 162: 2125-2139.
doi: 10.1104/pp.113.219451 pmid: 23818171
[29] Deng Z J, Cheng H Y, Song S Q. Effects of temperature, scarification, dry storage, stratification, phytohormone and light on dormancy-breaking and germination of Cotinus coggygria var. cinerea (Anacardiaceae) seeds. Seed Sci Technol, 2010, 38: 572-584.
doi: 10.15258/sst
[30] Chen H H, Tong J H, Fu W, Liang Z W, Ruan J X, Yu Y G, Song X, Yuan L B, Xiao L T, Liu J, Cui Y H, Huang S Z, Li C L. The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiol, 2020, 184: 1969-1978.
doi: 10.1104/pp.20.01255 pmid: 33037128
[31] Hu Q, Lin C, Guan Y, Sheteiwy M S, Hu W, Hu J. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep, 2017, 7: 5295.
doi: 10.1038/s41598-017-04104-x
[32] Steinbach H S, Benech-Arnold R L, Sanchez R A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol, 1997, 113: 149-154.
pmid: 12223597
[33] Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa N K, Lopez-Molina L. Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA signaling for the control of early postgermination growth in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 239-251.
[34] Penfield S, Gilday A D, Halliday K J, Graham I A. DELLA- mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol, 2006, 16: 2366-2370.
doi: 10.1016/j.cub.2006.10.057 pmid: 17141619
[35] Nonogaki H. ABA responses during seed development and germination. Adv Bot Res, 2019, 92: 171-217.
doi: 10.1016/bs.abr.2019.04.005
[36] 宋松泉, 刘军, 徐恒恒, 刘旭, 黄荟. 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制. 中国农业科学, 2020, 53: 857-873.
doi: 10.3864/j.issn.0578-1752.2020.05.001
Song S Q, Liu J, Xu H H, Liu X, Huang H. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination. Sci Agric Sin, 2020, 53: 857-873. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.05.001
[37] Lim J, Lim C W, Lee S C. Core components of abscisic acid signaling and their post-translation modification. Front Plant Sci, 2022, 13: 895698.
doi: 10.3389/fpls.2022.895698
[38] Liu X, Hou X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci, 2018, 9: 251.
doi: 10.3389/fpls.2018.00251 pmid: 29535756
[39] Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants, 2020, 9: 703.
doi: 10.3390/plants9060703
[40] Nelson S K, Steber C M. Gibberellin hormone signal perception:Down-regulating DELLA repressors of plant growth and development. In: HeddenP, ThomasS G, Annual Plant Reviews, Volume 49: The Gibberellins. Ltd,eds. Oxford: John Wiley & Sons, 2016. pp 153-187.
[41] 宋松泉, 刘军, 黄荟, 伍贤进, 徐恒恒, 张琪, 李秀梅, 梁娟. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制. 中国科学, 2020, 50: 599-615.
Song S Q, Liu J, Huang H, Wu X J, Xu H H, Zhang Q, Li X M, Liang J. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy. Sci Sin Vitae, 2020, 50: 599-615. (in Chinese with English abstract)
doi: 10.1360/SSV-2019-0289
[42] McGinty E M, Murphy K M, Hauvermale A L. Seed dormancy and preharvest sprouting in quinoa (Chenopodium quinoa Willd). Plants, 2021, 10: 458.
doi: 10.3390/plants10030458
[43] Hauvermale A L, Tuttle K M, Takebayashi Y, Seo M, Steber C M. Loss of Arabidopsis thaliana seed dormancy is associated with increased accumulation of the GID1 GA hormone receptors. Plant Cell Physiol, 2015, 56: 1773-1785.
doi: 10.1093/pcp/pcv084 pmid: 26136598
[44] Tuttle K M, Martinez S A, Schramm E C, Takebayashi Y, Seo M, Steber C M. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum L. Seed Sci Res, 2015, 25: 179-193.
doi: 10.1017/S0960258515000057
[45] Patwa N, Penning B W. Environmental impact on cereal crop grain damage from preharvest sprouting and late maturity α-amylase. In: PatwaN, PenningB W,eds. Sustainable Agriculture in the Era of Climate Change, Cham, Switzerland: Springer, 2020. pp 23-41.
[46] Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 2008, 20: 2729-2745.
doi: 10.1105/tpc.108.061515 pmid: 18941053
[47] Lee K P, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA, 2010, 107: 19108-19113.
doi: 10.1073/pnas.1012896107
[48] Kendall S L, Hellwege A, Marriot P, Whalley C, Graham I A, Penfifield S. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell, 2011, 23: 2568-2580.
doi: 10.1105/tpc.111.087643
[49] Tognacca R S, Botto J F. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. Plant Commun, 2021, 2: 100169.
doi: 10.1016/j.xplc.2021.100169
[50] Chiang G C K, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe W J J, Donohue K, De Meaux J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol, 2011, 20: 3336-3349.
[51] Née G, Xiang Y, Soppe W J J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[52] Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A, Dobrowolska G, Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862 pmid: 29030481
[53] Buijs G, Kodde J, Groot S P C, Bentsink L. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. J Exp Bot, 2018, 69: 3601-3608.
doi: 10.1093/jxb/ery156 pmid: 29701795
[54] Nakabayashi K, Bartsch M, Ding J, Soppe W J J. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genet, 2015, 11: e1005737.
doi: 10.1371/journal.pgen.1005737
[55] Nonogaki H. Seed biology updates-highlights and new discoveries in seed dormancy and germination research. Front Plant Sci, 2017, 8: 524.
[56] Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol, 2016, 170: 947-955.
doi: 10.1104/pp.15.01483
[57] Graeber K, Voegele A, Büttner-Mainik A, Sperber K, Mummenhoff K, Leubner-Metzger G. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION 1genes. Plant Physiol, 2013, 161: 1903-1917.
doi: 10.1104/pp.112.213298 pmid: 23426197
[58] Szakonyi D, Duque P. Alternative splicing as a regulator of early plant development. Front Plant Sci, 2018, 19: 1174.
[59] Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe W J J. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds. Plant Cell, 2012, 24: 2826-2838.
doi: 10.1105/tpc.112.100214
[60] Ashikawa A, Abe F, Nakamura S.DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in Arabidopsis. Plant Sci, 2013, 208: 1-9.
[61] Carrillo-Barral N, Matilla A J, García-Ramas C, Rodríguez-Gacio M C. ABA-stimulated SoDOG1expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds. Physiol Plant, 2015, 155: 457-471.
doi: 10.1111/ppl.12352 pmid: 26046653
[62] Rikiishi K, Maekawa M. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS One, 2014, 9: e107618.
doi: 10.1371/journal.pone.0107618
[63] 张洋洋. 水稻DOG1-like基因克隆、表达分析与功能预测. 中国科学院大学硕士学位论文, 北京, 2016.
Zhang Y Y. Cloning, Expression Analysis and Functional Prediction of DOG1-like Genes in Rice. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2016.
[64] Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signaling pathway to control seed dormancy. Nat Commun, 2017, 8: 72.
doi: 10.1038/s41467-017-00113-6
[65] Nishimura N, Tsuchiya W, Moresco J J, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder J I, Yates J R, Hirayama T, Yamazaki T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat Commun, 2018, 9: 2132.
doi: 10.1038/s41467-018-04437-9 pmid: 29875377
[66] Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after- ripening. Plant Cell, 2011, 23: 2196-2208.
doi: 10.1105/tpc.111.086694
[67] Bewley J D, Nonogaki H. Seed maturation and germination. In: BewleyJ D, NonogakiH, Reference Module in Life Sciences. North York, ON,eds. Canada: Elsevier, 2017.
[68] Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1genes. Plant Mol Biol, 2010, 73: 67-87.
doi: 10.1007/s11103-009-9583-x pmid: 20013031
[69] Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: Evolution and function in angiosperm seeds. J Exp Bot, 2017, 68: 871-880.
doi: 10.1093/jxb/erw458 pmid: 28007955
[70] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Muñoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710-E6719.
[71] Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family—an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175
[72] Bryant F N, Hudges D, Hassani-Pak K, Eastmond P J. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 trans- activates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell, 2019, 31: 1276-1288.
[73] Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Lgnatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad M, Leubner-Metzger G. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci USA, 2014, 111: E3571-E3580.
[74] Bentsink L, Jowett J, Hanhart C J, Koornneef M.Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 17042-17047.
[75] Zhao M, Yang S, Liu X, Wu K. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci, 2015, 6: 159.
[76] Dekkers B J, He H, Hanson J, Willems L A, Jamar D C, Cueff G, Rajjou L, Hilhorst H W, Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J, 2016, 85: 451-465.
doi: 10.1111/tpj.2016.85.issue-4
[77] Li X, Chen T, Li Y, Wang Z, Cao H, Chen F, Li Y, Soppe W J J, Li W, Liu Y. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION 1 expression. Plant Cell, 2019, 31: 832-847.
doi: 10.1105/tpc.18.00449
[78] Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. Plant Cell Physiol, 2010, 51: 2031-2046.
doi: 10.1093/pcp/pcq162 pmid: 21045071
[79] Probst A V, Mittelsten S O. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol, 2015, 27: 8-16.
doi: 10.1016/j.pbi.2015.05.011 pmid: 26042538
[80] Kim J-M, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci, 2015, 6: 114.
[81] Whittle C A, Otto S P, Johnston M O, Krochko J E. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany, 2009, 87: 650-657.
[82] Angel A, Song J, Dean C, Howard M. A polycomb-based switch underlying quantitative epigenetic memory. Nature, 2011, 476: 105-108.
doi: 10.1038/nature10241
[83] Finch-Savage W E, Footitt S. Regulation of seed dormancy cycling in seasonal field environments. In: Finch-SavageW E, FootittS,eds. Advances in Plant Dormancy. Cham, Switzerland: Springer, 2015. pp 35-47.
[84] Barski A, Cuddapah S, Cui K, Roh T-Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129: 823-837.
doi: 10.1016/j.cell.2007.05.009 pmid: 17512414
[85] Soria G, Polo S E, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell, 2012, 46: 722-734.
doi: 10.1016/j.molcel.2012.06.002 pmid: 22749398
[86] Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu Z Y. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. New Phytol, 2018, 217: 1582-1597.
doi: 10.1111/nph.14933 pmid: 29250818
[87] Wolny E, Braszewska-Zalewska A, Kroczek D, Hasterok R. Histone H3 and H4 acetylation patterns are more dynamic than those of DNA methylation in Brachypodium distachyon embryos during seed maturation and germination. Protoplasma, 2017, 254: 2045-2052.
doi: 10.1007/s00709-017-1088-x
[88] Footitt S, Müller K, Kermode A R, Finch-Savage W E. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant J, 2015, 81: 413-425.
doi: 10.1111/tpj.2015.81.issue-3
[89] Li H-C, Chuang K, Henderson J T, Rider S D, Bai Y, Zhang H, Fountain M, Gerber J, Ogas J. PICKLE acts during germination to repress expression of embryonic traits. Plant J, 2005, 44: 1010-1022.
doi: 10.1111/tpj.2005.44.issue-6
[90] Zhang H, Rider S D, Henderson J T, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg H J, Romero-Severson J, Muir W M, Ogas J. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem, 2008, 283: 22637-22648.
doi: 10.1074/jbc.M802129200 pmid: 18539592
[91] Tai H H, Tai G C C, Beardmore T. Dynamic histone acetylation of late embryonic genes during seed germination. Plant Mol Biol, 2005, 59: 909-925.
doi: 10.1007/s11103-005-2081-x pmid: 16307366
[92] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149-161.
[93] Klupczyńska E A, Pawłowski T A. Regulation of seed dormancy and germination mechanisms in a changing environment. Int J Mol Sci, 2021, 22: 1357.
doi: 10.3390/ijms22031357
[94] Batista R A, Köhler C. Genomic imprinting in plants—revisiting existing models. Gene Dev, 2020, 34: 24-36.
doi: 10.1101/gad.332924.119 pmid: 31896690
[95] Rodrigues J A, Zilberman D. Evolution and function of genomic imprinting in plants. Genes Dev, 2015, 29: 2517-2531.
doi: 10.1101/gad.269902.115
[96] Barlow D P. Gametic imprinting in mammals. Science, 1995, 270: 1610-1613.
doi: 10.1126/science.270.5242.1610 pmid: 7502071
[97] Zhang H, Lang Z, Zhu J K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018, 19: 489-506.
doi: 10.1038/s41580-018-0016-z
[98] Penterman J, Zilberman D, Huh J H, Ballinger T, Henikoff S, Fischer R L. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA, 2007, 104: 6752-6757.
doi: 10.1073/pnas.0701861104 pmid: 17409185
[99] Park J S, Frost J M, Park K, Ohr H, Park G T, Kim S, Eom H, Lee I, Brooks J S, Fischer R L, Chol Y. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2017, 114: 2078-2083.
[100] Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J, 2016, 35: 1298-1311.
doi: 10.15252/embj.201593534 pmid: 27113256
[101] Pignatta D, Erdmann R M, Scheer E, Picard C L, Bell G W, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife, 2014, 3: e03198.
doi: 10.7554/eLife.03198
[102] Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360-1372.
doi: 10.1105/tpc.106.041178
[103] Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles C C, Zhou D X, Kaufmann K. Dynamic and spatial restriction of polycomb activity by plant histone demethylases. Nat Plants, 2018, 4: 681-689.
doi: 10.1038/s41477-018-0219-5 pmid: 30104650
[104] Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife, 2021, 10: e64593.
doi: 10.7554/eLife.64593
[105] Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Sheng Z, Tang S, Shao G, Luo J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J, 2020, 9: 68-78.
doi: 10.1016/j.cj.2020.06.005
[106] Piskurewicz U, Iwasaki M, Susaki D, Megies C, Kinoshita T, Lopez-Molina L. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. eLife, 2016, 5: e19573.
doi: 10.7554/eLife.19573
[107] Hsieh T F, Shin J, Uzawa R, Silva P, Cohen S, Bauer M J, Hashimoto M, Kirkbride R C, Harada J J, Zilberman D, Fischer R L. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA, 2011, 108: 1755-1762.
doi: 10.1073/pnas.1019273108
[108] Vu T M, Nakamura M, Calarco J P, Susaki D, Lim P Q, Kinoshita T, Higashiyama T, Martienssen R A, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development, 2013, 140: 2953-2960.
[109] Martínez G, Panda K, Köhler C, Slotkin R K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants, 2016, 2: 16030.
doi: 10.1038/nplants.2016.30 pmid: 27249563
[110] Calarco J P, Borges F, Donoghue M T, Van Ex F, Jullien P E, Lopes T, Gardner R, Berger F, Feijó J A, Becker J D, Martienssen R A. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194-205.
doi: 10.1016/j.cell.2012.09.001 pmid: 23000270
[111] Kim M Y, Ono A, Scholten S, Kinoshita T, Zilberman D, Okamoto T, Fischer R L. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proc Natl Acad Sci USA, 2019, 116: 9652-9657.
doi: 10.1073/pnas.1821435116 pmid: 31000601
[112] Brinkman A B, Gu H, Bartels S J J, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg H G. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res, 2012, 22: 1128-1138.
doi: 10.1101/gr.133728.111 pmid: 22466170
[113] Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet, 2010, 6: e1001152.
doi: 10.1371/journal.pgen.1001152
[114] Moreno-Romero J, Del Toro-De León G, Yadav V K, Santos-González J, Köhler C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol, 2019, 20: 41.
doi: 10.1186/s13059-019-1652-0 pmid: 30791924
[115] Zhang M, Xie S J, Dong X M, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res, 2014, 24: 167-176.
doi: 10.1101/gr.155879.113 pmid: 24131563
[116] Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, Foo S H, Lahouze B, Sprunck S, Berger F. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol, 2010, 20: 2137-2143.
[117] Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol, 2020, 22: 621-629.
doi: 10.1038/s41556-020-0515-y pmid: 32393884
[118] Batista R A, Moreno-Romero J, Qiu Y, van Boven J, SantosGonzález J, Figueiredo D D, Köhler C. The MADS-box transcription factor PHERES 1 controls imprinting in the endosperm by binding to domesticated transposons. eLife, 2019, 8: e50541.
doi: 10.7554/eLife.50541
[119] Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman C S, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009, 21: 3803-3822.
[120] Iwasaki M, Hyvärinen L, Piskurewicz U, Lopez-Molina L. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy. eLife, 2019, 8: e37434.
doi: 10.7554/eLife.37434
[121] Cuerda-Gil D, Slotkin R K. Non-canonical RNA-directed DNA methylation. Nat Plants, 2016, 2: 16163.
doi: 10.1038/nplants.2016.163 pmid: 27808230
[122] Qiu Q, Mei H, Deng X, He K, Wu B, Yao Q, Zhang J, Lu F, Ma J, Cao X. DNA methylation repels targeting of Arabidopsis REF6. Nat Commun, 2019, 10: 2063.
doi: 10.1038/s41467-019-10026-1 pmid: 31048693
[123] Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J, 2008, 54: 608-620.
doi: 10.1111/tpj.2008.54.issue-4
[124] Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe W J J, Li Y, Liu Y. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol, 2012, 193: 605-616.
doi: 10.1111/j.1469-8137.2011.03969.x pmid: 22122546
[125] Rehmani M S, Aziz U, Xian B, Shu K. Seed dormancy and longevity: A mutual dependence or a trade-off? Plant Cell Physiol, 2022, 63: 1029-1037.
doi: 10.1093/pcp/pcac069
[126] Holdsworth M J, Bentsink L, Soppe W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol, 2008, 179: 33-54.
doi: 10.1111/j.1469-8137.2008.02437.x pmid: 18422904
[127] Zhao P, Zhou X, Shen K, Liu Z, Cheng T, Liu D, Cheng Y, Peng X, Sun M X. Two-step maternal-to-zygotic transition with two phase parental genome contributions. Dev Cell, 2019, 49: 882-893.
doi: S1534-5807(19)30286-2 pmid: 31080059
[1] HAN Bei, SUN Si-Min, SUN Wei-Nan, YANG Xi-Yan, ZHANG Xian-Long. Molecular mechanisms of somatic embryogenesis in plants [J]. Acta Agronomica Sinica, 2023, 49(2): 299-309.
[2] CHEN Sai-Hua, ZHONG Wei-Jie, XUE Ming. Advances in heat-stress responses at sexual reproduction stage in plants [J]. Acta Agronomica Sinica, 2023, 49(12): 3143-3153.
[3] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[4] SUN Ai-Ling,WU Hong-Ming,CHEN Gao-Ming,ZHANG Tian-Yu,CAO Peng-Hui,LIU Shi-Jia,JIANG Ling,WAN Jian-Min. Mapping of QTLs for Seed Dormancy in Oryza Rufipogon Griff. [J]. Acta Agron Sin, 2018, 44(01): 15-23.
[5] LAN Hai,LENG Yi-Feng,ZHOU Shu-Feng,LIU Jian,RONG Ting-Zhao. Proteomic Analysis of Dormant Seeds with Dry Ripening Process in Maize Inbred Lines [J]. Acta Agron Sin, 2014, 40(10): 1865-1871.
[6] XU Heng-Heng,NI LI,LIU Shu-Jun,WANG Wei-Qing,WANG Wei-Ping,ZHANG Hong,CHENG Hong-Yan,SONG Song-Quan. Research Progress in Seed Germination and Its Control [J]. Acta Agron Sin, 2014, 40(07): 1141-1156.
[7] ZHAO Xu-Bo,LI Ai-Li,MAO Long*. Progress on Gene Regulatory Mechanisms by Small RNAs during Plant Polyploidization [J]. Acta Agron Sin, 2013, 39(08): 1331-1338.
[8] XU Jing, WANG Li, QIAN Qian, ZHANG Guang-Heng. Research Advance in Molecule Regulation Mechanism of Leaf Morphogenesis in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2013, 39(05): 767-774.
[9] ZHANG Hai-Ping,CHANG Cheng,YU Guang-Xia,ZHANG Xiu-Ying,YAN Chang-Sheng,XIAO Shi-He,SI Hong-Qi,LU Jie,MA Chuan-Xi. Identification of Molecular Markers Associated with Seed Dormancy in Mini Core Collections of Chinese Wheat and Landraces [J]. Acta Agron Sin, 2010, 36(10): 1649-1656.
[10] LIU Yang,WANG Qiang-Sheng,DING Yan-Feng,LIU Zheng-Hui,LI Gang-Hua,WANG Shao-Hua. Endogenous Phytohormone changes in the Release of Dormant Tillering Bud in rice [J]. Acta Agron Sin, 2009, 35(2): 356-362.
[11] JING Wen;JIANG Ling;ZHANG Wen-Wei;ZHAI Hu-Qu;WAN Jian-Min. Mapping QTL for Seed Dormancy in Weedy Rice [J]. Acta Agron Sin, 2008, 34(05): 737-742.
[12] LAN Hai;LI Xin-Hai;WANG Feng-Ge;GAO Shi-Bin;CAO Mo-Ju;TANG Qi-Lin;PAN Guang-Tang;ZHAO Jiu-Ran;RONG Ting-Zhao. QTL Mapping of Seed Dormancy in Maize (Zea mays L.) [J]. Acta Agron Sin, 2007, 33(09): 1474-1478.
[13] ZHANG Xia;TANG Wen-Hua;ZHANG Li-Qun. Biological Control of Plant Diseases and Plant Growth Promotion by Bacillus subtilis B931 [J]. Acta Agron Sin, 2007, 33(02): 236-241.
[14] XIE Hai-Yan;JIANG Pei-Dong;WANG Xiao-Ling;ZHANG Zhao-Wei;ZHU Wei;WANG Xue-De. Changes of Phytohormone Contents in Anther Abortion of Cytoplasmic Male Sterile Cotton [J]. Acta Agron Sin, 2006, 32(07): 1094-1096.
[15] ZHANG Hai-Ping; CHANG Cheng and XIAO Shi-He. Proteomic Analysis on Abscisic Acid Signal Transduction in Embryo Dormancy of Wheat (Triticum aestivum L.) [J]. Acta Agron Sin, 2006, 32(05): 690-697.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .