Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (10): 1865-1871.doi: 10.3724/SP.J.1006.2014.01865

• RESEARCH NOTES • Previous Articles     Next Articles

Proteomic Analysis of Dormant Seeds with Dry Ripening Process in Maize Inbred Lines

LAN Hai1,LENG Yi-Feng2,ZHOU Shu-Feng1,LIU Jian1,RONG Ting-Zhao1,*   

  1. 1 Maize Research Institute , Sichuan Agricultural University / Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2014-05-07 Revised:2014-07-06 Online:2014-10-12 Published:2014-07-23

Abstract:

Because the special natural climate of overabundant rain and poor sunshine in the southwest, pre-harvest sprouting has seriously affected the quality and yield of maize, looking for a good material with resistance to pre-harvest sprouting is the urgent need for improvement of existing maize strains. The results of this study indicated that proteome of 08-641, 008, and 127 seeds significantly changed during afterripening. Nine differentially expressed proteins related to dormancy in the seeds of maize inbred line 08-641 with 15 d afterripening process were analysed through 2-DE, including one newly induced expressed protein, two missing expressed proteins, five up-regulated expressed proteins, and one down-regulated expressed protein. Among the nine proteins,five proteins were identified by mass spectrometry, including three globulin-1 S allele precursor of storage proteins,one 2-isopropylmalate synthase B and one translationally-controlled tumor protein involved in regulating protein structure and cell function. The changes of proteins during dry ripening process of seeds indicated that the seeds undergo a series of physiological and biochemical activities befor they can germinate normally, and the deeply study on the biological function of these proteins will help us understand maize seed dormancy more clearly.

Key words: Maize, Seed dormancy, Storage substances, Two dimensional electrophoresis, Proteome

[1] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2004, 14: 1–16



[2] Romagosa I, Prada D, Moralejo M A, Sopena A, Muñoz P, Casas A M, Swanston J S, Molina-Cano J L. Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. J Exp Bot, 2001, 52: 1499–1506



[3] 孙果忠, 肖世和. 脱落酸与种子休眠. 植物生理学通讯, 2004, 40: 115–120



Sun G Z, Xiao S H. Abscisic acid and seed dormancy. Plant Physiol J, 2004, 40: 115–120 (in Chinese)



[4] 邢勇, 武月琴. 种子休眠与致休眠因子. 生物学教学, 2003, 28(5): 7–8



Xing Y, Wu Y Q. Seed dormancy and dormancy factor. Biol Teaching, 2003, 28(5): 7–8 (in Chinese)



[5] 侯冬花, 萨拉木•艾尼瓦尔, 海利力•库尔班. 种子休眠与休眠解除的研究进展. 新疆农业科学, 2007, 44(3): 349–354



Hou D H, Salamu•Ainiwaer, Hailili•Kuerban. Studies on seed dormancy and dormancy breaking. Xinjiang Agric Sci, 2007, 44(3): 349–354 (in Chinese with English abstract)



[6] 种子工作手册编写组. 种子工作手册. 上海: 上海科学技术出版社, 1979. p 425



Seeds Work Manual Editorial Group. Seeds Work Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1979. p 425 (in Chinese)



[7] 唐安军, 龙春林, 刀志灵. 种子休眠机制研究概述. 云南植物研究, 2004, 26: 241–251



Tang A J, Long C L, Dao Z L. Review on development of seed dormancy mechanisms. Acta Bot Yunnanica, 2004, 26: 241–251 (in Chinese with English abstract)



[8] 颜启传. 种子学. 北京: 中国农业出版社, 2001. p 559



Yan Q C. Spermology. Beijing: China Agricuture Press, 2001. p 559 (in Chinese)



[9] Karssen C M, Lacka E. A Revision of the Hormone Balance Theory of Seed Dormancy: Studies on Gibberellin and/or Abscisic Acid-Deficient Mutants of Arabidopsis thaliana. Springer, 1986. pp 315–323



[10] 孙秀琴, 田树霞. 元宝槭种子休眠生理的研究. 林业科学研究, 1991, 4: 185–191



Sun X Q, Tian S X. Research on seed dormancy physiology of Acer Truncatum. For Res, 1991, 4: 185–191 (in Chinese)



[11] 王艳华, 高述民, 李凤兰, 赵伟, 孙玉红, 路莲. 大山樱种子休眠机制的探讨. 种子, 2005, 24(5): 12–16



Wang Y H, Gao S M, Li F L, Zhao W, Sun Y H, Lu L. Discussion of dormancy mechanism of Prunus sargentill seeds. Seed, 2005, 24(5): 12–16 (in Chinese with English abstract)



[12] 叶常丰, 戴心维. 种子学. 北京, 中国农业出版社, 1994. pp 178–180



Ye C F, Dai X W. Spermology. Beijing: China Agricuture Press, 1994. pp 178–180 (in Chinese)



[13] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol, 2001, 126: 835–848



[14] Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P. Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol, 2006, 142: 1493–1510



[15] 张海萍, 常成, 肖世和. 小麦胚休眠中ABA信号转导的蛋白质组分析. 作物学报, 2006, 32: 690–697



Zhang H P, Chang C, Xiao S H. Proteomic analysis on abscisic acid signal transduction in embryo dormancy of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32: 690–697 (in Chinese with English abstract)



[16] 兰海, 李新海, 王凤格, 高世斌, 曹墨菊, 唐祈林, 潘光堂, 赵久然, 荣廷昭. 玉米种子休眠性的QTL定位. 作物学报, 2007, 33: 1474–1478



Lan H, Li X H, Wang F G, Gao S B, Cao M J, Tang Q L, Pan G T, Zhao J R, Rong T Z. QTL mapping of seed dormancy in maize (Zea mays L.). Acta Agron Sin, 2007, 33: 1474–1478 (in Chinese with English abstract)



[17] Wallace N H, Kriz A L. Nucleotide sequence of a cDNA clone corresponding to the maize globulin-2 gene. Plant Physiol, 1991, 95: 973



[18] Belanger F C, Kriz A L. Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics, 1991, 129: 863–872



[19] Hansen M, Friis C, Bowra S, Holm P B, Vincze E. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley. J Exp Bot, 2009, 60: 153–167



[20] Gallardo K, Job C, Groot S P, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination. a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837



[21] 孙晶, 吴毓, 王继红, 李庆伟. 受翻译调节的肿瘤蛋白的结构与功能. 中国生物化学与分子生物学报, 2006, 22: 603–608



Sun J, Wu Y, Wang J H, Li Q W. Structure and function of translationally controlled tumor protein. Chin J Biochem Mol Biol, 2006, 22: 603–608 (in Chinese with English abstract)



[22] 陈玉芹, 王喆之. 植物翻译控制肿瘤蛋白的分子结构特征与功能预测分析. 生物技术通报, 2008, (2): 105–112



Chen Y Q, Wang Z Z. Analysis of molecular structural character and function prediction on plant translationally controlled tumor protein. Biotechnol Bull, 2008, (2): 105–112 (in Chinese with English abstract)



[23] 林莎, 高帆, 罗洪, 牛蓓, 林颖, 秦小波, 徐莺, 陈放等. 麻疯树Jc-Tctp1基因的同源性分析及时空表达模式鉴定. 中国生物化学与分子生物学报, 2008, 24: 727–734



Lin S, Gao f, Luo H, Niu B, Lin Y, Qin X B, Xu Y, Chen F. Sequencing and expression of translationally controlled tumor protein (TCTP) of Jatropha curcas L. Chin J Biochem Mol Biol, 2008, 24: 727–734 (in Chinese with English abstract)



[24] Van de Sande W W J, Fahal A H, Riley T V, Verbrugh H, Van Belkum A. In vitro susceptibility of madurella mycetomatis, prime agent of madura foot, to tea tree oil and artemisinin. J Antimicrob Chemoth, 2007, 59: 553–555



[25] 曹必好, 雷建军, 陈国菊, 曾国平, 孟成民. 结球甘蓝转录调控肿瘤蛋白基因(TCTP)的分离与表达特性初步分析. 农业生物技术学报, 2006, 14: 996–997



Cao B H, Lei J J, Chen G J, Zeng G P, Meng C M. Isolation and expression analysis of the gene encoding translationally controlled tumor protein (TCTP) in cabbage. J Agric Biotechnol, 2006, 14: 996–997 (in Chinese with English abstract)



[26] Ermolayev V, Weschke W, Manteuffel R. Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot, 2003, 54: 2745–2756



[27] Dai S J, Chen T T, Chong K, Xue Y B, Liu S Q, Wang T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics, 2007, 6: 207–230



[28] 邵彩虹, 谢金水, 黄永兰. 孕穗期水稻不同功能叶的发育蛋白质组学分析. 中国水稻科学, 2009, 23: 456–462



Shao C H, Xie J S, Huang Y L. Developmental proteomics analysis of different functional leaves in rice (Oryza sativa) at the booting stage. Chin J Rice Sci, 2009, 23: 456–462 (in Chinese with English abstract)



[29] Sage Ono K, Ono M, Harada H, Kamada H. Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol, 1998, 39: 357–360



[30] 邓治, 覃碧, 冯福应, 李德军. 巴西橡胶树TCTP基因结构分析及分子标记开发. 热带作物学报, 2012, 33: 1450–1455



Deng Z, Qin B, Feng F Y, Li D J. Gene structure analysis development and molecular marker of HbTCTP. Chin J Trop Crops, 2012, 33: 1450–1455 (in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!