Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 15-23.doi: 10.3724/SP.J.1006.2018.00015
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
SUN Ai-Ling1,WU Hong-Ming1,CHEN Gao-Ming1,ZHANG Tian-Yu1,CAO Peng-Hui1,LIU Shi-Jia1,JIANG Ling1,*,WAN Jian-Min1,2
[1] Bewley J D. Seed germination and dormancy. Plant Cell, 1997, 9: 1055–1066 [2] Dong Y J, Tsuzuki E, Kamiunten H, Terao H, Lin D Z, Matsuo M, Zheng Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res, 2003, 81: 133–139 [3] 卢丙越. 水稻品种强休眠性的定位及遗传解析. 南京农业大学博士学位论文, 江苏南京, 2011 Lu B Y. QTL Mapping and genetic dissection of strong seed dormancy in N22 (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2011 (in Chinese with English abstract) [4] Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA, 2010, 107: 5792–5797 [5] Takeuchi Y, Lin S Y, Sasaki T, Yano M. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet, 2003, 107: 1174–1180 [6] Gu X Y, Kianian S F, Hareland G A, Hoffer B L, Foley M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet, 2005, 110: 1108–1118 [7] Gu X Y, Liu T L, Feng J H, Suttle J C, Gibbons J. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol, 2010, 73: 97–104 [8] Lu B Y, Xie K, Yang C Y, Wang S F, Liu X, Zhang L, Jiang L, Wan J M. Mapping two major effect grain dormancy QTL in rice. Mol Breed, 2011, 28: 453–462 [9] 罗正良. 水稻抗穗发芽主效QTL qPSR8的精细定位及候选基因分析. 四川农业大学硕士学位论文, 四川雅安, 2012 Luo Z L. Fine mapping and candidate gene analysis of qPSR8, a major QTL for pre-harvest sprouting resistance in rice. MS Thesis of Sichuan Agricultural University, Ya’an, China, 2012 (in Chinese with English abstract) [10] 钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展. 中国水稻科学, 2000, 14: 103–106 Zhong D B, Luo L J, Ying C S. Advances on transferring elite gene from wild rice species into cultivated rice. Chin J Rice Sci, 2000, 14: 103–106 (in Chinese with English abstract) [11] Wan J M, Cao Y J, Wang C M, Ikehashi H. Quantitative trait loci associated with seed dormancy in rice. Crop Sci, 2005, 45: 712–716 [12] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15 [13] Sanguinetti C J, Dias N E, Simpson A J. RAPD silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 914–918 [14] Meng L, Li H H, Zhng L Y, Wang J K. QTL IciMapping Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283 [15] McCouch S R, Cho Y G, Yno M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [16] Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet, 1996, 92: 213–224 [17] Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet, 2000, 100: 840–846 [18] Miura K, Lin S, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet, 2002, 104: 981–986 [19] Wang L, Cheng J, Lai Y Y, Du W L, Huang X, Wang Z F, Zhang H S. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta, 2014, 239: 411–420 [20] Li W, Xu L, Bai X F, Xing Y Z. Quantitative trait loci for seed dormancy in rice. Euphytica, 2011, 178: 427–435 [21] Marzougui S, Sugimoto K, Yamanouchi U, Shimono M, Hoshino T, Hori K, Kobayashi M, Ishiyama K, Yano M. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice. Theor Appl Genet, 2012, 124: 893–902 [22] Gu X Y, Kianian S F, Foley M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics, 2004, 166: 1503–1516 [23] Sasaki K, Kazama Y, Chae Y, Sato T. Confirmation of novel quantitative trait loci for seed dormancy at different ripening stages in rice. Rice Sci, 2013, 20: 207–212 [24] Rathi S, Baruah A R, Chowdhury R K, Sarma R N. QTL analysis of seed dormancy in indigenous rice of Assam, India. Cereal Res Commun, 2011, 39: 137–146 |
[1] | HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104. |
[2] | LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170. |
[3] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[4] | YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210. |
[5] | ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183. |
[6] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[7] | XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743. |
[8] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[9] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[10] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[11] | ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128. |
[12] | XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. |
[13] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[14] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[15] | ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904. |
|