Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 24-31.doi: 10.3724/SP.J.1006.2018.00024
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
XU Xue-Zhong,WANG Ting,WAN Wang,LI Si-Hui,ZHU Guo-Hui*
[1]Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol, 2014, 65: 715–741 [2]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273 [3]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227 [4]Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165–185 [5]Qin X, Zeevaart J A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA, 1999, 96: 15354–15361 [6]Zhu G, Ye N, Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol, 2009, 50: 644–651 [7]Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot, 2011, 62: 3907–3916 [8]Hwang S, Chen H, Huang W, Chu Y, Shii C, Cheng W. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12–22 [9]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 261–263 Li H S. Experimental Principle and Technology of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 261–263 [10]Priya R, Siva R. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family. J Plant Res, 2015, 128: 519–534 [11]Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, Mccarty D R. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35: 44–56 [12]Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27: 325–333 [13]Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 136: 3134–3147 [14]Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J, 2006, 45: 309–319 [15]Hu X, Zhang A, Zhang J, Jiang M. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol, 2006, 47: 1484–1495 [16]Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991, 11: 81–128 [17]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399 [18]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938–1952 [19]Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 1–22 |
[1] | JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295. |
[2] | CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132. |
[3] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[4] | LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376. |
[5] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[6] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[7] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[8] | MA Xin-Lei, XU Rui-Qi, SUO Xiao-Man, LI Jing-Shi, GU Peng-Peng, YAO Rui, LIN Xiao-Hu, GAO Hui. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress [J]. Acta Agronomica Sinica, 2022, 48(10): 2517-2532. |
[9] | JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545. |
[10] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
[11] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
[12] | LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612. |
[13] | QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786. |
[14] | ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480. |
[15] | LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439. |
|