Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3143-3153.doi: 10.3724/SP.J.1006.2023.32020

• REVIEW •     Next Articles

Advances in heat-stress responses at sexual reproduction stage in plants

CHEN Sai-Hua*(), ZHONG Wei-Jie, XUE Ming   

  1. Key Laboratory of Plant Functional Genomics of the Ministry of Education / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-06 Accepted:2023-06-28 Online:2023-12-12 Published:2023-07-11
  • Contact: * E-mail: chensaihua@yzu.edu.cn
  • Supported by:
    Hainan Yazhou Bay Seed Laboratory and China National Seed Group(B23YQ1510);Jiangsu Province Government Funding(JBGS[2021]002);Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)3100)

Abstract:

The occurrence of extreme hot weather poses a threat to crop production. Heat stress suffered at reproductive stage in crops is always correlated with crop yield losses, and thus the underlying molecular mechanisms are of great significance in crop thermotolerance improvement. However, relevant studies are mainly focused on Arabidopsis and less is known in crops. From the perspective of plants, here, we reviewed the heat-stress responses at reproductive stage, including meiosis process, tapetum degradation, microspore development, pollen-tube germination, and fertilization, as well as seed development. Based on these advances, we proposed feasible strategies for thermotolerance improvement, which will pave a way for the breeding of heat-tolerant crop varieties.

Key words: plants, sexual reproduction, heat stress, response, molecular mechanism, thermotolerance

Fig. 1

Molecular responses involved in reproductive stages under heat stress in plants Inside { } are proteins, protein complexes, or signal pathways responding to heat stress; → represents promotion; ┫represents repression; - means interaction; and / means or. { }↑ represents an integral upregulation when responding to heat stress, { }↓ represents an integral down regulation when responding to heat stress."

Table 1

Genes, proteins, and signaling pathways responding to heat stress and their corresponding strategies"

生殖阶段
Reproductive stage
物种
Species
基因/蛋白/信号通路
Gene/Protein/Signal pathway
高温的响应
Responses to heat stress
效应
Effects
参考文献
Reference
应对高温的策略(高温下)
Strategies for heat resistance
(Under heat stress)
减数分裂
Meiosis
拟南芥
Arabidopsis
SPO11, DMC1, ASY4, ASY1, and ZYP1 被抑制
Repressed
遗传交叉的数量显著减少,联会复合体组装受到影响Decrease CO number, affect the SC assembly [14] 增强蛋白的稳定性
To increase their stability
拟南芥
Arabidopsis
ATM → MRE11-RAD50-NBS1 被诱导
Upregulated
确保DSB修复成功,维护高温下减数分裂染色体的完整性 Ensure the recovery of DSB [17] 增强ATM的表达
To increase ATM expression
大麦
Barley
ASY1 → DMC1-RecA 被诱导
Upregulated
促进同源染色体序列交换
Promote the exchange of
[19] 增强ASY1的表达
玉米
Corn
HSP101 → RAD51 被诱导
Upregulated
促进DSB修复与同源重组
Ensure the recovery of DSB and recombination
[20] 增强HSP101的表达
To increase HSP101 expression
玉米
Corn
INVAN6 → Tre6P/SnRK1 被诱导
Upregulated
调控花药中糖的稳态
Regulate the sugar homeostasis in anthers
[21] 增强INVAN6的表达
To increase INVAN6 expression
水稻
Rice
cCu/Zn-SOD1/OsCATB ┫ROS/MDA 被抑制
Repressed
花粉中的ROS/MDA含量上升,花粉活力下降
The ROS content elevated and the pollen viability decreased
[22, 23] 增强 SOD1和CATB的酶活
To enhance SOD1 and CATB
e
杨树
Populus
PtCYCA1;2/CYCA1;2 被抑制
Repressed
减数分裂I期到减数分裂II期的转变失败
Hinder the transition from meiosis Ⅰ to meiosis Ⅱ
[25] 增强 PtCYCA1;2的表达
To increase PtCYCA1;2
绒毡层降解
Tapetal
degradation
拟南芥
Arabidopsis
MYB80 UNDEAD 被抑制
Repressed
绒毡层的降解提前和花粉败育
Exhibit premature tapetal degradation and pollen abortion
[29] 增强此通路
To enhance this pathway
棉花
Cotton
GhMYB66/GhMYB4 → GhCKI 被诱导
Upregulated
延迟绒毡层的程序性细胞死亡和花药开裂
Delay tapetum programmed cell death and anther dehiscence
[30, 31, 32] 减弱此通路
To attenuate this pathway
小孢子发育Microspore development 拟南芥
Arabidopsis
bZIP17/bZIP28/bZIP60 → UPR 被诱导
Upregulated
UPR的感受与信号转导,促进UPR
As sensor and signal transducer of UPR, promote UPR
[34, 35] 增强此通路
To enhance this pathway


拟南芥
Arabidopsis
IRE1-AtbZIP60 SEC31A → UPR 被诱导
Upregulated
激活UPR,维持高温下花粉的发育与活力
Activate UPR, maintain the pollen viability
[36] 增强此通路
To enhance this pathway
番茄/拟南芥
Tomato/ Arabidopsis
HsfA1a, HsfA2, AtREN1 被诱导
Upregulated
增加了花粉高温抗性
Improve the thermotolerance of pollen
[37, 38, 39] 增强这些基因的表达
To increase these genes
水稻
Rice
OsHSP60-3B-FLO6 被诱导
Upregulated
稳定FLO6蛋白,调控后期淀粉体的发育 Stabilize FLO6 and modulate starch granule biogenesis [40] 增强OsHSP60对FLO6的稳定
To stabilize FLO6 by enhancing OsHSP60
番茄
Tomato
SlACS3/SlACS11 → ethylene synthesis 被诱导
Upregulated
促进乙烯合成
Promote ethylene synthesis
[42] 促进 SlACS3/SlACS11的表达
To promote SlACS3/SlACS11
番茄
Tomato
SlETR3/SlCTR2 → ethylene signal transduction 被诱导
Upregulated
促进乙烯信号转导
Promote ethylene signal transduction
[42] 促进SlETR3/SlCTR2的表达
To promote SlETR3/SlCTR2
拟南芥, 大麦
Arabidopsis, barley
YUC2, YUC6, TAA1/TIR2 被抑制
Repressed
降低了内源生长素的含量,导致花粉败育
Decrease the Auxin content and make pollen abortion
[43] 调节生长素合成基因表达
Modulate genes in Auxin biosynthesis
棉花
Cotton
miR160ARF10/ARF17 被诱导
Upregulated
激活生长素信号,增强高温敏感性
Activate the auxin signaling pathway and enhance heat sensitivity
[46] 抑制miR160的表达
To repress the expression of miR160
花粉管萌发与授精
Pollen tube growth and fertilization
拟南芥
Arabidopsis
CNGC16 HsfA2/HsfB1d 被诱导
Upregulated
感受钙离子信号,激活热激反应
Sensitive to calcium, activate heat shock response
[49] 增强此信号通路
To enhance this pathway
拟南芥
Arabidopsis
TMS1 被诱导
Upregulated
促进高温下花粉管的正常生长
Promote the pollen tube growth under heat stress
[50] 增强 TMS1的表达
To promote TMS1 gene expression
拟南芥
Arabidopsis
CLE45-SKM1/SKM2 被诱导
Upregulated
改善高温下花粉管的生长缺陷
Compensate the deficiency of pollen tube growth
[51] 增强CLE45的表达
To enhance the expression of CLE45
籽粒发育
Seed development
拟南芥
Arabidopsis
SnRK1-FUSCA3(FUS3) 被诱导
Upregulated
SnRK1介导了胚胎发育阶段FUS3的体内磷酸化
The phosphorylation of FUS3 mediated by SnRK1
[53] 稳定SnRK1的活性
To stabilize the activity of SnRK1
二穗短柄草
Brachypodium
APR6 → H2A.Z 被抑制
Repressed
H2A.Z在染色体上占据的规律被扰乱
Impair the profile and deposition of H2A.Z
[56] 增强 APR6的表达
To enhance APR6
其他
Others
番茄
Tomato
F3H → Flavonols ┫ROS 被诱导
Upregulated
黄酮醇物质作为抗氧化剂抑制ROS的积累
Reduce ROS accumulation by flavonols
[52] 增强F3H等基因的表达
To promote F3H gene
水稻
Rice
HTH5 ┫ROS 被诱导
Upregulated
抑制ROS的积累,提高花粉活力
Reduce ROS accumulation, improve pollen viability
[57] 增强HTH5的表达
To promote HTH5
[1] 王荣, 王遵娅, 高荣, 叶殿秀. 1961-2020年中国区域性高温过程的气候特征及变化趋势. 地球物理学报, 2023, 66: 494-504.
Wang R, Wang Z Y, Gao R, Ye D X.Climatic characteristics and trends of regional high temperature processes in China during 1961-2020. Chin J Geophys, 2023, 66: 494-504. (in Chinese with English abstract)
[2] Battisti D S, Naylor R L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 2009, 323: 240-244.
doi: 10.1126/science.1164363 pmid: 19131626
[3] Zhao C, Liu B, Piao S, Wang X, Lobell D B, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Muller C, Peng S, Penuelas J, Ruane A C, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326-9331.
doi: 10.1073/pnas.1701762114 pmid: 28811375
[4] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. Research progress on effects of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.82044
[5] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
doi: 10.3864/j.issn.0578-1752.2021.17.004
Yan Z H, Liu D R, Jia X C, Yang Q, Chen Y B, Dong P F, Wang Q. Effects of high temperature and drought on tassel development, physiological characteristics and yield of maize during flowering period. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
[6] Lohani N, Singh M B, Bhalla P L. High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot, 2020, 71: 555-568.
doi: 10.1093/jxb/erz426 pmid: 31560053
[7] Browne R G, Li S F, Iacuone S, Dolferus R, Parish R W. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. Planta, 2021, 254: 4.
doi: 10.1007/s00425-021-03656-7 pmid: 34131818
[8] Kakani V G, Reddy K R, Koti S, Wallace T P, Prasad P V, Reddy V R, Zhao D. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot, 2005, 96: 59-67.
doi: 10.1093/aob/mci149
[9] Minamiyama Y, Takemura S, Ichikawa H. Food additive-induced oxidative stress in rat male reproductive organs and hippocampus. Arch Biochem Biophys, 2021, 701: 108810.
doi: 10.1016/j.abb.2021.108810
[10] Brauner E V, Hansen A M, Doherty D A, Dickinson J E, Handelsman D J, Hickey M, Skakkebaek N E, Juul A, Hart R. The association between in-utero exposure to stressful life events during pregnancy and male reproductive function in a cohort of 20-year-old offspring: the Raine Study. Hum Reprod, 2019, 34: 1345-1355.
doi: 10.1093/humrep/dez070
[11] De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ, 2014, 37: 1-18.
doi: 10.1111/pce.2014.37.issue-1
[12] Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol, 2009, 50: 1911-1922.
doi: 10.1093/pcp/pcp135 pmid: 19808807
[13] De Storme N, Geelen D. High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Commun Biol, 2020, 3: 187.
doi: 10.1038/s42003-020-0897-1 pmid: 32327690
[14] Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi I E, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. Plant Physiol, 2021, 185: 1783-1797.
doi: 10.1093/plphys/kiab012 pmid: 33793950
[15] Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi I E, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiol, 2022, 188: 1210-1228.
doi: 10.1093/plphys/kiab563
[16] Lei X, Ning Y, Eid E I, Yang K, Chen C, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. Plant Signal Behav, 2020, 15: 1746985.
doi: 10.1080/15592324.2020.1746985
[17] Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. Plant J, 2023, 114: 403-423.
doi: 10.1111/tpj.v114.2
[18] Higgins J D, Perry R M, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong S J, Franklin F C. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell, 2012, 24: 4096-4109.
doi: 10.1105/tpc.112.102483
[19] De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ, 2014, 37: 1-18.
doi: 10.1111/pce.2014.37.issue-1
[20] Li Y, Huang Y, Sun H, Wang T, Ru W, Pan L, Zhao X, Dong Z, Huang W, Jin W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. Plant Cell, 2022, 34: 3702-3717.
doi: 10.1093/plcell/koac184
[21] Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan Y L, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. New Phytol, 2022, 236: 2172-2188.
doi: 10.1111/nph.18490 pmid: 36104957
[22] Zhao Q, Zhou L, Liu J, Du X, Asad M A, Huang F, Pan G, Cheng F. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiol Biochem, 2018, 122: 90-101.
doi: 10.1016/j.plaphy.2017.11.009
[23] Zhao Q, Zhou L, Liu J, Cao Z, Du X, Huang F, Pan G, Cheng F. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep, 2018, 37: 741-757.
doi: 10.1007/s00299-018-2264-y pmid: 29464319
[24] Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep, 2017, 7: 5281.
doi: 10.1038/s41598-017-05661-x pmid: 28706219
[25] Zhou Q, Cheng X, Kong B, Zhao Y, Li Z, Sang Y, Wu J, Zhang P. Heat shock-induced failure of meiosis I to meiosis II transition leads to 2n pollen formation in a woody plant. Plant Physiol, 2022, 189: 2110-2127.
doi: 10.1093/plphys/kiac219 pmid: 35567496
[26] Hedhly A, Hormaza J I, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci, 2009, 14: 30-36.
doi: 10.1016/j.tplants.2008.11.001 pmid: 19062328
[27] Phan H A, Iacuone S, Li S F, Parish R W. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell, 2011, 23: 2209-2224.
doi: 10.1105/tpc.110.082651
[28] Phan H A, Li S F, Parish R W. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol, 2012, 78: 171-183.
doi: 10.1007/s11103-011-9855-0 pmid: 22086333
[29] Dundar G, Shao Z, Higashitani N, Kikuta M, Izumi M, Higashitani A. Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. Dev Biol, 2019, 456: 190-200.
doi: 10.1016/j.ydbio.2019.08.018
[30] Li Y, Li Y, Chen Y, Wang M, Yang J, Zhang X, Zhu L, Kong J, Min L. Genome-wide identification, evolutionary estimation and functional characterization of two cotton CKI gene types. BMC Plant Biol, 2021, 21: 229.
doi: 10.1186/s12870-021-02990-y
[31] Min L, Zhu L, Tu L, Deng F, Yuan D, Zhang X. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835.
doi: 10.1111/tpj.2013.75.issue-5
[32] Li Y, Li Y, Su Q, Wu Y, Zhang R, Li Y, Ma Y, Ma H, Guo X, Zhu L, Min L, Zhang X. High temperature induces male sterility via MYB66-MYB4-Casein kinase I signaling in cotton. Plant Physiol, 2022, 189: 2091-2109.
doi: 10.1093/plphys/kiac213
[33] Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol, 2018, 60: 757-779.
doi: 10.1111/jipb.12701
[34] Zhang S S, Yang H, Ding L, Song Z T, Ma H, Chang F, Liu J X. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. Plant Cell, 2017, 29: 1007-1023.
doi: 10.1105/tpc.16.00916
[35] Gao J, Wang M J, Wang J J, Lu H P, Liu J X. bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH, 2022, 3: 1-11.
doi: 10.1007/s42994-021-00062-1
[36] Deng Y, Srivastava R, Quilichini T D, Dong H, Bao Y, Horner H T, Howell S H. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. Plant J, 2016, 88: 193-204.
doi: 10.1111/tpj.2016.88.issue-2
[37] Xie D L, Huang H M, Zhou C Y, Liu C X, Kanwar M K, Qi Z Y, Zhou J. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in Solanum lycopersicum L. Hortic Res, 2022, 9: uhac163.
doi: 10.1093/hr/uhac163
[38] Fragkostefanakis S, Mesihovic A, Simm S, Paupiere M J, Hu Y, Paul P, Mishra S K, Tschiersch B, Theres K, Bovy A, Schleiff E, Scharf K D. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol, 2016, 170: 2461-2477.
doi: 10.1104/pp.15.01913 pmid: 26917685
[39] Renak D, Gibalova A, Solcova K, Honys D. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein. Plant Cell Environ, 2014, 37: 670-683.
doi: 10.1111/pce.2014.37.issue-3
[40] Lin S, Liu Z, Sun S, Xue F, Li H, Tursun A, Cao L, Zhang L, Wilson Z A, Zhang D, Liang W. Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis. Plant Physiol, 2023: kiad136.
[41] Firon N, Pressman E, Meir S, Khoury R, Altahan L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants, 2012, 2012: pls24.
[42] Jegadeesan S, Beery A, Altahan L, Meir S, Pressman E, Firon N. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod, 2018, 31: 367-383.
doi: 10.1007/s00497-018-0339-0 pmid: 29948007
[43] Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA, 2010, 107: 8569-8574.
doi: 10.1073/pnas.1000869107 pmid: 20421476
[44] Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y, Fang Q, Wu Y, Xie S, Ding Y, Su X, Hu Q, Zhang Q, Li X, Zhang X. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell, 2018, 30: 1387-1403.
doi: 10.1105/tpc.18.00074
[45] Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X. Sugar and auxin signaling pathways respond to high- temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164: 1293-1308.
doi: 10.1104/pp.113.232314
[46] Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J, 2017, 91: 977-994.
doi: 10.1111/tpj.2017.91.issue-6
[47] Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y G, Maathuis F J, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell, 2009, 21: 2829-2843.
doi: 10.1105/tpc.108.065318
[48] Tunc-Ozdemir M, Tang C, Ishka M R, Brown E, Groves N R, Myers C T, Rato C, Poulsen L R, Mcdowell S, Miller G, Mittler R, Harper J F. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol, 2013, 161: 1010-1020.
doi: 10.1104/pp.112.206888 pmid: 23370720
[49] Rahmati I M, Brown E, Weigand C, Tillett R L, Schlauch K A, Miller G, Harper J F. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat- sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics, 2018, 19: 549.
doi: 10.1186/s12864-018-4930-4 pmid: 30041596
[50] Yang K Z, Xia C, Liu X L, Dou X Y, Wang W, Chen L Q, Zhang X Q, Xie L F, He L, Ma X, Ye D. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J, 2009, 57: 870-882.
doi: 10.1111/tpj.2009.57.issue-5
[51] Endo S, Shinohara H, Matsubayashi Y, Fukuda H. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Curr Biol, 2013, 23: 1670-1676.
doi: 10.1016/j.cub.2013.06.060
[52] Muhlemann J K, Younts T, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci USA, 2018, 115: E11188-E11197.
[53] Chan A, Carianopol C, Tsai A Y, Varatharajah K, Chiu R S, Gazzarrini S. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. J Exp Bot, 2017, 68: 4219-4231.
doi: 10.1093/jxb/erx233
[54] Talbert P B, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 2010, 11: 264-275.
[55] Kumar S V, Wigge P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 2010, 140: 136-147.
doi: 10.1016/j.cell.2009.11.006
[56] Boden S A, Kavanova M, Finnegan E J, Wigge P A. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol, 2013, 14: R65.
doi: 10.1186/gb-2013-14-6-r65
[57] Cao Z, Tang H, Cai Y, Zeng B, Zhao J, Tang X, Lu M, Wang H, Zhu X, Wu X, Yuan L, Wan J. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. Plant Biotechnol J, 2022, 20: 1591-1605.
doi: 10.1111/pbi.v20.8
[58] Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. Natural alleles of a proteasome alpha2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet, 2015, 47: 827-833.
doi: 10.1038/ng.3305
[59] Kan Y, Mu X R, Zhang H, Gao J, Shan J X, Ye W W, Lin H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat Plants, 2022, 8: 53-67.
doi: 10.1038/s41477-021-01039-0 pmid: 34992240
[60] Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376: 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289
[61] Nieto-Sotelo J, Kannan K B, Martinez L M, Segal C. Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene, 1999, 230: 187-195.
pmid: 10216257
[1] SONG Song-Quan, TANG Cui-Fang, LEI Hua-Ping, JIANG Xiao-Cheng, WANG Wei-Qing, CHENG Hong-Yan. Research progress of seed dormancy and germination regulation [J]. Acta Agronomica Sinica, 2024, 50(1): 1-15.
[2] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[3] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[4] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[5] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[6] WANG Rui, LI Xiang-Ling, GUO Dong, WANG Xin-Bing, MA Wei, LI Cong-Feng, ZHAO Ming, ZHOU Bao-Yuan. Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress [J]. Acta Agronomica Sinica, 2023, 49(12): 3342-3351.
[7] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[8] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[9] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[10] MA Xin-Lei, XU Rui-Qi, SUO Xiao-Man, LI Jing-Shi, GU Peng-Peng, YAO Rui, LIN Xiao-Hu, GAO Hui. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress [J]. Acta Agronomica Sinica, 2022, 48(10): 2517-2532.
[11] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[12] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[13] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[14] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[15] GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .