Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 67-75.doi: 10.3724/SP.J.1006.2024.32012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of small peptide Ospep5 on cadmium tolerance in rice

LI Ming-Yue1,3(), ZHANG Wen-Ting1,2, LI Yang1,2, ZHANG Bao-Long1,2, YANG Li-Ming3, WANG Jin-Yan1,2,*()   

  1. 1Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China
    3College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2023-04-01 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-13
  • Contact: *E-mail: wangjy@jaas.ac.cn
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)3124)

Abstract:

Cadmium (Cd) stress is one of the major heavy metal stresses which causes serious impacts on plant growth and development. Although studies have shown that plant small peptides have a mitigating effect on stress, research on their tolerance to cadmium toxicity in rice is limited. In previous studies, a few peptides were identified through translatome, transcriptome, and proteome analysis, among which Ospep5 was found to significantly improve salt tolerance in rice. In this study, the effects of Ospep5 on the growth of rice seedlings under cadmium stress were investigated using the japonica cultivar Nipponbare, Ospep5 overexpressing line Ospep5-OX, and the CRISPR/Cas9 mutant ospep5-3 as the experimental materials. The results showed that 500 μmol L-1 CdCl2 significantly inhibited the morphological growth and chlorophyll content of rice seedlings, while the activities of superoxide dismutase (SOD), contents of proline (Pro), malondialdehyde (MDA), and cadmium ion content were significantly increased. Compared to cadmium stress alone, exogenous application of synthetic Ospep5 effectively alleviated the inhibition of cadmium stress on the morphological growth of rice seedlings. Furthermore, SOD activity was significantly increased, and MDA content, Pro content, and cadmium ion content were significantly reduced. And the relative expression level of cadmium tolerance genes (OsHMA2, OsHMA3, OsCAL1) were upregulated. In conclusion, Ospep5 improves the tolerance of rice seedlings to cadmium stress by regulating various physiological and biochemical reactions and the expression of cadmium tolerance genes.

Key words: rice, cadmium stress, Ospep5, seedling growth

Table 1

Information of primers"

基因名称
Gene ID
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
Ospep5-OE gttacttctgcactaggtaccATGCTTGATCCAACGCACAT tcttagaattcccggggatccTCATGATGGTTTCTCGTAGC
Ospep5-Crispr TGTGCATGTTCGTCCAGCCTCACG AAACCGTGAGGCTGGACGAACATG
Ospep5-RT ATGCTTGATCCAACGCACATG TCATGATGGTTTCTCGTAGCTG
OsHMA2 CGCTGAATCAGGCAAGGTTG AATGCTCGAACAGCGACACG
OsHMA3 GTCCTTCTTCGAGTGGCTCT CGATGAGCATGAGGACGTTG
OsCAL1 GCTTCTGCAAGAAGGTCTGC GCCAAGAACAGAAGCTCGTC
Actin TGGTCGTACCACAGGTATTGTGTT AAGGTCGAGACGAAGGATAGCAT

Fig. 1

Relative expression level of CRISPR/Cas9 mutant and overexpression lines of Ospep5 A: targeted mutagenesis and Sanger sequencing chromatograms of the Ospep5; B: the relative expression level of Ospep5 genes; significant differences are indicated by different lowercase letters (P < 0.05), as determined by ANOVA."

Fig. 2

Phenotypic effects of Ospep5 on rice seedling growth under cadmium stress A: the phenotype of wild-type Nipponbare under different treatments; B: the phenotype of CRISPR/Cas9 mutant ospep5-3 under different treatments; C: overexpression line Ospep5-OX, ospep5-3 under 500 μmol L-1 CdCl2 treatment; the bar is 5 cm. CK: nutrient solution; Cd: nutrient solution containing μmol L-1 CdCl2; Cd+S5: nutrient solution containing 500 μmol L-1 CdCl2 and spraying 300 nmol L-1 Ospep5; R: Nipponbare; -OX: overexpression line ospep5-OX; -3: CRISPR/Cas9 mutant ospep5-3."

Table 2

Effects of Ospep5 on fresh weight, plant height, and root length of rice seedlings under cadmium stress"

材料
Material
处理
Treatment
指标Indicator
鲜重 Fresh weight (g) 株高 Plant height (cm) 根长 Root length (cm)
日本晴Nipponbare CK 0.77±0.11 a 36.40±0.60 a 20.18±1.65 a
Cd 0.18±0.04 cd 13.93±1.28 ef 14.08±1.91 c
Cd+S5 0.38±0.04 b 19.90±1.51 d 16.48±0.94 b
Ospep5-3 CK 0.52±0.03 b 29.88±4.05 b 12.71±0.77 cd
Cd 0.16±0.01 d 12.61±0.89 f 9.35±0.64 e
Cd+S5 0.24±0.02 c 15.16±0.62 e 12.01±1.91 d
Ospep5-OX CK 0.50±0.09 b 25.35±0.76 c 16.50±1.00 b
Cd 0.21±0.04 cd 14.35±0.72 ef 14.05±1.28 c

Fig. 3

Effects of Ospep5 on physiological indexes of rice seedlings under cadmium stress A: chlorophyll content; B: malondialdehyde (MDA) content; C: proline (Pro) content; D: superoxide dismutase (SOD) activity. The abscissa is the same as those given in Table 2. Significant differences are indicated by different lowercase letters (P < 0.05), as determined by ANOVA."

Fig. 4

Effects of Ospep5 on cadmium content in rice seedlings under cadmium stress A: cadmium ion content in aboveground parts; B: cadmium ion content in underground parts. CK, Cd and Cd+S5 are the same as in Table 2. Significant differences are indicated by different lowercase letters (P < 0.05), as determined by ANOVA."

Fig. 5

Relative expression level of Ospep5 on rice seedling related genes under cadmium stress A: the relative expression level of Ospep5 genes; B: the relative expression level of OsHMA2 genes; C: the relative expression level of OsHMA3 genes; D: the relative expression level of OsCAL1genes. CK, Cd and Cd+S5 are the same as those given in Table 2. Significant differences are indicated by different lowercase letters (P < 0.05), as determined by ANOVA."

[1] Ai H, Wu D X, Li C L, Hou M M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. Front Plant Sci, 2022, 13: 1003953.
doi: 10.3389/fpls.2022.1003953
[2] Ma L, Abuduwaili J, Smanov Z, Ge Y, Samarkhanov K, Saparov G, Issanova G. Spatial and vertical variations and heavy metal enrichments in irrigated soils of the Syr Darya River watershed, Aral Sea Basin, Kazakhstan. Int J Environ Res Public Health, 2019, 16: 4398.
doi: 10.3390/ijerph16224398
[3] 姜艺, 黄琳丽. 镉胁迫对植物的影响探究. 南方农业, 2020, 14: 138-139.
Jiang Y, Huang L L. Effects of cadmium stress on plants. South Agric, 2020, 14: 138-139. (in Chinese with English abstract)
[4] White P J, Brown P H. Plant nutrition for sustainable development and global health. Ann Bot, 2010, 105: 1073-1080.
doi: 10.1093/aob/mcq085
[5] Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta, 2003, 216: 939-950.
doi: 10.1007/s00425-002-0947-6 pmid: 12687361
[6] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475-486.
doi: 10.1007/s004250000458 pmid: 11525504
[7] 迟春宁, 丁国华. 植物耐重金属的分子生物学研究进展. 生物技术通报, 2017, 33(3): 6-11.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.002
Chi C N, Ding G H. Advances in molecular biology of heavy metal tolerance in plants. Biotechnol Bull, 2017, 33(3): 6-11. (in Chinese with English abstract)
[8] Viehweger K. How plants cope with heavy metals. Bot Stud, 2014, 55: 35.
doi: 10.1186/1999-3110-55-35 pmid: 28510963
[9] Matsubayashi Y. Post translationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65: 385-413.
doi: 10.1146/annurev-arplant-050312-120122 pmid: 24779997
[10] Sonali R, Peter L, Michael U, Wolf-Rüdiger S. Small and mighty: peptide hormones in plant biology. Plant Cell, 2019, 30: tpc. 118.tt0718.
[11] Ryan C A, Pearce G, Scheer J, Moura D S. Polypeptide hormones. Plant Cell, 2002, 14: S251-S264.
[12] Lyapina I, Ivanov V, Fesenko I. Peptidome: chaos or inevitability. Int J Mol Sci, 2021, 22: 13128.
doi: 10.3390/ijms222313128
[13] Matsubayashi Y. Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post- translational modification enzymes. Proc Jpn Acad (Ser B), 2018, 94: 59-74.
doi: 10.2183/pjab.94.006
[14] Li Y L, Dai X R, Yue X, Gao X Q, Zhang X S. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues. Planta, 2014, 240: 713-728.
doi: 10.1007/s00425-014-2123-1 pmid: 25048445
[15] Gasic K, Korban S S. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol, 2007, 64: 361-369.
doi: 10.1007/s11103-007-9158-7
[16] Meng X X, Li W F, Shen R F, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. J Hazard Mater, 2022, 422: 126913.
doi: 10.1016/j.jhazmat.2021.126913
[17] Gu T Y, Qi Z Y, Gong J M. Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiol, 2023, 191: 515-527.
doi: 10.1093/plphys/kiac423
[18] Hua K, Tao X, Han P, Wang R, Zhu J. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant, 2019, 12: 1003-1014.
doi: S1674-2052(19)30122-4 pmid: 30928636
[19] Ma X L, Zhang Q U, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[20] Dos Santos-Silva C A, Zupin L, Oliveira-Lima M, Vilela L M B, Bezerra-Neto J P, Ferreira-Neto J R, Ferreira J D C, de Oliveira- Silva R L, Pires C J, Aburjaile F F, de Oliveira M F, Kido E A, Crovella S, Benko-Iseppon A M. Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era. Bioinform Biol Insights, 2020, 14: 117793222095273-1177932220952739.
doi: 10.1177/1177932220952739
[21] Nakaminami K, Okamoto M, Higuchi-Takeuchi M, Yoshizumi T, Yamaguchi Y, Fukao Y, Shimizu M, Ohashi C, Tanaka M, Matsui M, Shinozaki K, Seki M, Hanada K. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci USA, 2018, 115: 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074
[22] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long- distance signalling. Nature, 2018, 556: 235-238.
doi: 10.1038/s41586-018-0009-2
[23] Gu T Y, Qi Z A, Chen S Y, Yan J, Fang Z J, Wang J M, Gong J M. Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiol, 2023, 191: 515-527.
doi: 10.1093/plphys/kiac423
[24] Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun, 2018, 9: 645.
doi: 10.1038/s41467-018-03088-0
[25] 张辉, 李录山, 杨晓峰, 李华兵, 黄艳, 杜宣延, 藤志. 凹凸棒对镉胁迫下菠菜生长生理及镉富集的影响. 中国蔬菜, 2022, 404: 52-57.
Zhang H, Li L S, Yang X F, Li H B, Huang Y, Du X Y, Teng Z. Effects of attapulgite on growth physiology and cadmium accumulation of spinach under cadmium stress. China Veget, 2022, 404: 52-57. (in Chinese with English abstract)
[26] 赵红, 徐芬芬, 余淑铃, 郑怡婷, 符诗婷. 2,4-表油菜素内酯对镉胁迫下黄瓜幼苗的缓解效应. 北方园艺, 2022, (20): 35-41.
Zhao H, Xu F F, Yu S L, Zheng Y T, Fu S T. Alleviating effect of 2,4-epibrassinolide on cucumber seedlings under cadmium stress. Nor Hortic, 2022, (20): 35-41 (in Chinese with English abstract)
[27] Li Y, Zhang S N, Bao Q, Chu Y S, Sun H Y, Huang Y Z. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environ Pollut, 2022, 304: 119178.
doi: 10.1016/j.envpol.2022.119178
[28] Zhang H M, Zhu J H, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[29] 李晓科, 武玉珍, 张义贤. 2,4-表油菜素内酯对镉胁迫下大麦幼苗生长的影响. 福建农业学报, 2018, 33: 1251-1256.
Li X K, Wu Y Z, Zhang Y X. Effects of 2,4-epibrassinolide on the growth of barley seedlings under cadmium stress. Fujian Agric, 2018, 33: 1251-1256. (in Chinese with English abstract)
[30] 张家欣. 外源水杨酸对干旱和镉胁迫下旱柳生理特性及抗逆基因表达的影响. 辽宁大学硕士学位论文, 辽宁沈阳, 2022.
Zhang J X. Effects of Exogenous Salicylic Acid on Physiological Characteristics and Stress Resistance Gene Expression of Salix matsudana under Drought and Cadmium Stress. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2022 (in Chinese with English abstract)
[31] 程雪, 宋晓萱, 刘毓鑫, 陈李文彬, 叶嘉, 张浩. 镉胁迫对芹菜幼苗叶绿素含量和生理指标的影响. 农业科技通讯, 2020, (4): 168-171.
Cheng X, Song X X, Liu Y X, Chen L W B, Ye J, Zhang H. Effects of cadmium stress on chlorophyll content and physiological indexes of celery seedlings. Bull Agric Sci Tech, 2020, (4): 168-171. (in Chinese with English abstract)
[1] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[2] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[3] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[4] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[5] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[6] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[7] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[8] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[9] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[10] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[11] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[12] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[13] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[14] XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746.
[15] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .