Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 55-66.doi: 10.3724/SP.J.1006.2024.33011

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping and cloning of plant height gene PHR1 in maize

YANG Chen-Xi1(), ZHOU Wen-Qi1,2,*(), ZHOU Xiang-Yan1,*(), LIU Zhong-Xiang2, ZHOU Yu-Qian2, LIU Jie-Shan1, YANG Yan-Zhong2, HE Hai-Jun2, WANG Xiao-Juan2, LIAN Xiao-Rong2, LI Yong-Sheng2   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Gansu 730070, Lanzhou, China
    2Crop Research Institute, Gansu Academy of Agriculture Sciences, Gansu 730070, Lanzhou, China
  • Received:2023-02-24 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-25
  • Contact: *E-mail: zhouwenqi850202@163.com; E-mail: zhouxy@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32160490);National Natural Science Foundation of China(31960443);Major Project of Gansu Province(21ZD11NA005);Major Project of Gansu Province(21ZD10NF003);Biological Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);Youth Mentor Fund Project of Gansu Agricultural University(GSAU-QDFC-2021-14);Strategic Research and Consulting Project of Chinese Academy of Engineering(2021-DFZD-21-3)

Abstract:

Plant height is an important index for the ideal maize breeding, which not only affects the mechanical harvest of maize, but also closely relates to the lodging resistance and the biological yield of maize. In this study, a plant height reducing mutant-1 (phr-1) was obtained by using low-dose fast neutron (4.19 Gy) irradiation to mutate the maize inbred line KWS39 at the low ear position. Phenotypic traits were investigated and analyzed in the field, and candidate genes were identified by mining and functional annotation of genes in the target region based on the B73 reference genome using the extreme trait pool sequencing analysis (BSA-seq) and the method of target region recombination exchange identification with F2 segregation population of phr-1×B73. These results indicated that there might be a variation site in Bin1.06 interval on chromosome 1, and the target region was precisely located between two markers, Umc1122 and Umc1583a, with a 600 kb interval by using the large segregation population and polymorphic markers. Brachytic2 (BR2), encoding a sugar protein regulating the polar transport of auxin in maize stems, is a known gene controlling plant height in this region. The sequencing of candidate genes revealed that phr-1 was a new allelic mutation of br2-1, with a 165 bp insertion in the fourth exon of the BR2 gene resulting in the amino acid at position 547 changing to a stop codon and premature protein translation termination. The mutation site and variation mode of phr-1 were completely different from those of br2-1 single base mutation site. The allelic hybridization experiment confirmed that the PHR1 candidate gene is a new allelic mutation of the BR2 gene. This study provides new germplasm resources for maize BR2 gene in plant height genetic improvement.

Key words: maize, plant height, ear height, the bulked segregant analysis, map-based localization, function analysis

Table 1

Primers used in this study"

引物名称
Primer name
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequence (5′-3′)
GAPDH CCATCATGCCACACAGAAAAC AGGAACACGGAAGGACATACCAG
BR2-Q1F/Q1R TGAGCAACTCCAGCTCTTAACCA GCGAACTGGACATCCTCAGATTA
BR2-Z1F/Z1R ATTCACGCAGAGCAGAAGAGC GCATAAGGTTGGACAGGGAAAG
BR2-H1F/H1R AGGTTGGGGAGCGCGGCCTGCAG ACCCATCCATCCATCCATTCCGTCCT
RT-Br2-F1/R1 ACGAGCATCAGGGAGAACC GCTCCCCAACCTGCGTGTCG

Fig. 1

Phenotype of KWS39 (CK) and phr-1 mutant plants A, B: the comparison of plant height between KWS39 and phr-1, with phr-1 being shorter than KWS39; Bar: 10 cm. C: statistical analysis of PH and EH using t-test. D: the comparison of internode lengths between KWS39 and phr-1. E: KWS39 and phr-1 both have 11 internodes; the internodes are indicated from root to tip by 1, 2, 3, …, 9, 10, 11; but the length between each internode in phr-1 is shorter than in the control. Scale: 10 cm."

Fig. 2

Phenotype of KWS39 (CK) and phr-1 mutant plants A: there was no significant difference in plant height and root length between KWS39 and phr-1 after five days of germination. B: the inverted third leaf, the inverted second leaf, and the flag leaf from left to right. C: both KWS39 and phr-1 have normal root development with phr-1 having a more developed root system. D: phenotypic traits of self-pollinated ears in phr-1 and KWS39. E: there was no significant change in grain size and weight between KWS39 and phr-1. Bar: 10 cm (A-D)."

Table 2

Analysis of agronomic traits between KWS39 and phr-1 (mean±SD)"

类型
Type
性状
Trait
野生型KWS39
Wild type KWS39
突变体phr-1
Mutant phr-1
P-value N
株型Plant architecture 株高Plant height (cm) 182.8±11.0 93.3±2.3** 3.88E-09 15
穗位高Ear height (cm) 66.4±17.3 23.2±1.7** 0.000106 15
雄穗Tassel 雄穗分支数 Tassel branch number 5.1±1.4 4.7±1.6 0.582953 15
雄穗长Tassel length (cm) 31.65±2.3 27.68±1.9* 0.031581 15
雌穗Ear 穗长Ear length (cm) 13.81±1.3 13.08±0.5 0.447437 15
穗粗Ear diameter 3.97±0.1 3.7±0.2 0.094702 15
穗行数 Kernel row number 14.4±0.8 13.4±0.9 0.052177 15
行粒数 Grains row number 24.1±4.1 22.6±4.6 0.057321 15
秃尖长Bald tip length (cm) 1.5±0.6 1.31±0.4 0.078416 15
叶型Blade profile 倒3叶长Inverted 3 leaves long (cm) 47.25±3.8 44.3±3.6* 0.045242 15
倒3叶宽Inverted 3 leaves wide (cm) 6.61±0.7 6.36±0.6 0.486148 15

Table 3

Chi-square test of F2 population"

群体
Population
观察值Observations 期望值Expectations 卡方检验
Chi-square
野生型Wild type 突变体Mutant 野生型Wild type 突变体Mutant
phr-1×B73 F2 762 238 760 240 0.88

Fig. 3

Phenotype of KWS39, phr-1, F1 hybrid plant, and dwarf mutant in F2 plant Scale: 10 cm."

Fig. 4

Linkage map of phr-1 candidate genes A: the black and gray dots represent ΔSNP-index. B: the blue line is the fitted line of ΔSNP-index after windowing. C: the orange-yellow line is the 95% confidence line. D: the red line is the 99% confidence line."

Table 4

Crossing-over value of preliminary localization markers and phenotypes"

标记名称
Molecular marker
交换频率
Crossing-over value
umc2235 0.38
umc1035 0.29
umc2560 0.17
umc2569 0.15
umc1122 0.08
umc1583a 0.11
umc1278 0.21
umc2387 0.36

Fig. 5

Sequence analysis of BR2 transcript between KWS39 and phr-1"

Fig. 6

Generic identification of mutant F1 representative type is consistent A: plant phenotypes of B73 and the mutants br2-1, phr-1 and (bra2-1×ph-1) F1; B: plant phenotypes of B73 and KWS39, phr-1 and (bra2-1×phr-1) F1. Bar: 10 cm."

Fig. 7

Relative expression pattern of BR2 genes in four maize inbred line leaves The data are tested by t-test; ** indicates significant difference at P < 0.01."

Table 5

Genetic code and function annotation of BR2 in different species"

物种
Species
同源基因
Orthologous gene
功能预测
Putative function
玉米Zea mays GRMZM2G315375 PGP1
拟南芥Arabidopsis thaliana AT1G10680 P-glycoprotein 10
水稻Oryza sativa LOC_Os02g46680 Multidrug resistance protein, putative, expressed
白杨树Populus trichocarpa POPTR_0001s02200 PGP2; ATPase, coupled to transmembrane movement of substances
高粱Sorghum bicolor Sb04g023730 P-glycoprotein 1
葡萄Vitis vinifera GSVIVG0009946001 Multidrug resistance protein 1, 2

Fig. 8

Sequence alignment of animo acid sequence of ZmBR2 with its homologues and phylogenetic analysis A: sequence alignment of animo acid sequence of ZmBR2 with its homologues; B: homology tree of ZmBR2; C: phylogenetic tree of ZmBR2."

[1] Duvick D N. Genetic progress in yield of the United States maize (Zea mays L.). Maydica, 2005, 50: 193-202.
[2] 周文期, 连晓荣, 刘忠祥, 周玉乾, 赵小强. 玉米株高和穗位高的调控机理研究. 分子植物育种, 2021, 19: 7965-7976.
Zhou W Q, Lian X R, Liu Z X, Zhou Y Q, Zhao X Q. Research progress on the mechanism of controlling maize plant height and ear height. Mol Plant Breed, 2021, 19: 7965-7976. (in Chinese with English abstract)
[3] Mansfield B D, Mumm R H. Survey of plant density tolerance in U. S. maize germplasm. Crop Sci, 2014, 54: 157-173.
doi: 10.2135/cropsci2013.04.0252
[4] 何少勇. 玉米矮秆突变体的等位性鉴定及对外源激素的敏感性研究. 四川农业大学硕士学位论文, 四川温江, 2017.
He S Y. Allelic Identification of Maize Dwarf Mutants and Sensitivity to Exogenous Hormones. MS Thesis of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2017. (in Chinese with English abstract)
[5] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[6] Best N B, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B P. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol, 2016, 171: 2633-2647.
doi: 10.1104/pp.16.00399
[7] Li Z X, Zhang X R, Zhao Y J, Li Y J, Zhang G F, Peng Z H, Zhang J R. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J, 2018, 16: 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064
[8] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A D, Victor L, Blaine J, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791-3802.
doi: 10.1093/jxb/erv182
[9] 刘忠祥, 徐大鹏, 连晓荣, 周文期, 寇思荣, 姚泽恩. 快中子辐照玉米自交系的细胞学效应及后代变异. 辐射研究与辐射工艺学报, 2017, 35(6): 33-40.
Liu Z X, Xu D P, Lian X R, Zhou W Q, Kou S R, Yao Z E. Cytological effects and offspring variation of maize inbred lines irradiated by fast neutron. J Radiat Res Radiat Process, 2017, 35(6): 33-40. (in Chinese with English abstract)
[10] Lu X D, Liu J, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496-504.
doi: S1674-2052(17)30368-4 pmid: 29223623
[11] 周文期, 刘忠祥, 王晓娟, 何海军, 周玉乾, 杨彦忠, 连晓荣, 李永生. 利用BSA-Seq方法快速定位作物农艺性状QTL/基因概述. 甘肃农业科技, 2022, 53(4): 1-10.
Zhou W Q, Liu Z X, Wang X J, He H J, Zhou Y Q, Yang Y Z, Lian X R, Li Y S. Rapid mapping of QTL/gene for agronomic traits in crops using BSA-Seq method. Gansu Agric Sci Tech, 2022, 53(4): 1-10. (in Chinese with English abstract)
[12] Chmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc, 2008, 3: 467-476.
[13] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744. (in Chinese)
[14] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[15] Wenger W J, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet, 2010, 6: e1000942.
doi: 10.1371/journal.pgen.1000942
[16] Han X S, Qin Y, Yu F, Ren, Zhang Z X, Qiu F Z. A megabase- scale deletion is associated with phenotypic variation of multiple traits in maize. Genetics, 2018, 211: 305-316.
doi: 10.1534/genetics.118.301567
[17] Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad 2 intron 1 and seed development in maize. Plant J, 2017, 91: 132-144.
doi: 10.1111/tpj.2017.91.issue-1
[18] Yan Q T, Lu H, Mao W X, Li J Y. Map-based cloning for plants gene isolation. Mol Plant Breed, 2005, 3: 585-590.
[19] 牛静, 陈赛华, 赵婕妤, 曾召琼, 蔡茂红, 周亮, 刘喜, 江玲, 万建民. 水稻株型突变体rad-1rad-2的鉴定与功能基因克隆. 作物学报, 2015, 41: 1621-1631.
doi: 10.3724/SP.J.1006.2015.01621
Niu J, Chen S H, Zhao J Y, Zeng Z Q, Cai M H, Zhou L, Liu X, Jiang L, Wan J M. Identification and map-based cloning of rad-1 and rad-2, two rice architecture determinant mutants. Acta Agron Sin, 2015, 41: 1621-1631. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01621
[20] 周文期.调控水稻叶表皮发育的LPL2DSP1基因克隆与功能分析. 兰州大学博士学位论文, 甘肃兰州, 2015.
Zhou W Q. The Cloning andFunctional Analysis of LPL2 and DSP1, Two Genes, that Regulate the Epidermal Cell Development in Rice. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2015. (in Chinese with English abstract)
[21] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究. 作物学报, 2022, 48: 1401-1415.
doi: 10.3724/SP.J.1006.2022.12032
Zhou W Q, Qiang X X, Wang S, Jiang J W, Wei W R. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice. Acta Agron Sin, 2022, 48: 1401-1415. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12032
[22] 吕洪坤, 郑军. 图位克隆技术在玉米基因分离中的应用. 分子植物育种, 2013, 11: 460-468.
Lyu H K, Zheng J. The application of map-based cloning in maize gene isolation. Mol Plant Breed, 2013, 11: 460-468. (in Chinese with English abstract)
[23] 张素梅, 刘凤军, 刘保申, 王立静, 董树亭. 新的玉米显性矮秆基因的发现及初步分析. 玉米科学, 2007, 15(3): 15-18.
Zhang S M, Liu F J, Liu B S, Wang L J, Dong S T. Discovery of a new dominant dwarf gene in maize and its preliminary study. J Maize Sci, 2007, 15(3): 15-18. (in Chinese with English abstract)
[24] 徐幸. 种植密度对不同株高玉米品种茎秆抗倒伏性能及产量的影响. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Xu X. Effects of Planting Density on Stem Lodging Resistance and Yield of Different Maize Cultivars with Different Height. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019. (in Chinese with English abstract)
[25] 周文期, 张贺通, 何海军, 龚佃明, 杨彦忠, 刘忠祥, 李永生, 王晓娟, 连晓荣, 周玉乾, 邱法展. 调控玉米株高和穗位高候选基因ZmDLE1的定位. 中国农业科学, 2023, 56: 821-837.
doi: 10.3864/j.issn.0578-1752.2023.05.002
Zhou W Q, Zhang H T, He H J, Gong D M, Yang Y Z, Liu Z X, Li Y S, Wang X J, Lian X R, Zhou Y Q, Qiu F Z. Candidate gene localization of ZmDLE1 gene regulating plant height and ear height in maize. Sci Agric Sin, 2023, 56: 821-837. (in Chinese with English abstract)
[26] 邢安琪.玉米株高主效QTL-qph1ys基因及其修饰因子ys-modifier的克隆、功能验证及机理研究. 中国农业大学博士学位论文, 北京, 2014.
Xing A Q. Positional Cloning andDissection of a Major Plant Height QTL-qph1 and the ys Mutant Gene and Its Modifier in Maize. PhD Dissertation of China Agricultural University, Beijing, China, 2014. (in Chinese with English abstract)
[27] Emerson R A, Beadle G W, Fraser A C. A Summary of Linkage Studies in Maize. Ithaca N Y: Cornell University, 1935.
[28] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wan X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661. (in Chinese with English abstract)
[29] 周文期, 连晓荣, 周玉乾, 王兴荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 寇思荣. EMS诱变玉米自交系种质创新应用. 玉米科学, 2020, 28(6): 31-38.
Zhou W Q, Lian X R, Zhou Y Q, Wang X R, Yang Y Z, Liu Z X, Wang X J, He H J, Kou S R. Innovative application of EMS mutagenesis germplasm of maize inbred lines. J Maize Sci, 2020, 28(6): 31-38. (in Chinese)
[30] 连晓荣, 王晓娟, 周玉乾, 何海军, 杨彦忠, 刘忠祥, 李永生, 杨晨曦, 周文期. EMS诱变玉米自交系郑58后代变异分析及应用评价. 玉米科学(2023-07-04). https://kns.cnki.net/kcms2/detail/22.1201.S.20230704.0951.002.html.
Lian X R, Wang X J, Zhou Y Q, He H J, Yang Y Z, Liu Z X, Li Y S, Yang C X, Zhou W Q. Variation analysis and application evaluation of progeny of maize inbred line Zheng 58 by EMS chemical mutation. J Maize Sci, (2023-07-04). https://kns.cnki.net/kcms2/detail/22.1201.S.20230704.0951.002.html. (in Chinese with English abstract)
[31] Pilu R, Cassani E, Villa D, Curriale S, Panzeri D, Badone F C, Landoni M. Isolation and characterization of a new mutant allele of brachytic2 maize gene. Mol Breed, 2007, 20: 83-91.
doi: 10.1007/s11032-006-9073-7
[32] Balzan S, Carraro N, Salleres B, Cortivo C D, Tuinstra M R, Johal G, Varotto S. Genetic and phenotypic characterization of a novel brachytic2 allele of maize. Plant Growth Regul, 2018, 86: 81-92.
doi: 10.1007/s10725-018-0412-6
[33] 魏莱.玉米稀有等位株高基因subr2的定位与功能分析. 中国农业大学博士学位论文, 北京, 2018.
Wei L. Mapping andFunctional Analysis of a Rare Allele of Maize Plant Height Gene subr2. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract)
[1] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering,and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[2] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[3] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[4] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[5] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[6] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[7] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[8] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[9] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[10] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[11] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[12] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[13] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[14] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[15] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .