Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 42-54.doi: 10.3724/SP.J.1006.2024.34047

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of alkaloids in tobacco

LIU Ying-Chao1(), FANG Dun-Huang2, XU Hai-Ming1, TONG Zhi-Jun2,*(), XIAO Bing-Guang2,*()   

  1. 1Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
  • Received:2023-03-09 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-19
  • Contact: *E-mail: tzj861@163.com; E-mail: xiaobgsubmission@126.com
  • Supported by:
    China National Tobacco Company(110202101002);China National Tobacco Company(110202101038(JY-15));Yunnan Tobacco Company(2021530000241013);Yunnan Tobacco Company(2022530000241009)

Abstract:

Alkaloids are important chemical components in tobacco. In order to understand the genetic architecture of alkaloids in tobacco and identify major effect loci controlling alkaloids related traits, QTL mapping on tobacco alkaloids was performed. A set of 271 recombinant inbred lines (RIL) were constructed with Y3 and K326 as the parents. The RIL population was planted in Yanhe, Yuxi, Yunnan province and Shilin, Kunming, Yunnan province in 2018, 2019, and 2020, respectively. Five alkaloid phenotypes including total plant alkali (TPA), nicotine (NIC), nornicotine (NOR), anabasine (ANAB), and anatabine (ANAT) were measured. A linkage map of 46,129 markers was constructed by genome sequencing of the population. QTL mapping was performed by the software QTLNetwork 2.0 which was developed based on the mixed linear model. A total of 15 QTLs with significant additive effects were identified. The contribution rate of additive effect to the corresponding phenotypes varied from 0.58% to 11.57%. Four major QTLs, qTPA14 for total plant alkali, qNIC14 for nicotine, qANAB14 for anabasine, and qANAT14 for anatabine, accounted for more than 10% of phenotypic variation of the corresponding traits, which were located in linkage group 14. Six QTLs with significant additive-by-environment interaction effects were detected, their additive-by-environment interaction effects explained the phenotypic variation of 0.80%-1.81%. Five pairs of QTLs with significant additive-by-additive epistasis effects were detected, accounting for phenotypic variation from 0.15% to 2.31%, while two pairs of QTLs were detected with significant epistasis-by-environment interaction effects, which explaining the proportion of phenotypic variation from 0.81% to 1.16%. The results pave a foundation for further isolation of candidate genes, the dissection of genetic mechanism, and the molecular improvement of tobacco alkaloid traits.

Key words: tobacco, the recombinant inbred line, alkaloids, complex traits, gene by environment interaction

Table 1

Statistics of alkaloids in four types of environments"

性状
Trait
环境
Environment
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
遗传率
h2 (%)
总植物碱TPA (%) E1 2.91 0.88 1.09 5.62 0.24 -0.39 30.18 31.13
E2 1.96 0.51 0.95 3.53 0.62 0.36 26.23
E3 3.05 0.86 1.09 5.67 0.44 0.03 28.15
E4 2.75 0.68 1.29 4.80 0.30 -0.24 24.75
BLUP 2.67 0.32 1.99 3.50 0.30 -0.43 11.90
烟碱NIC (%) E1 2.66 0.88 0.77 5.26 0.21 -0.42 33.14 31.05
E2 1.80 0.50 0.52 3.45 0.46 0.36 27.71
E3 2.96 0.84 0.78 5.41 0.27 -0.10 28.50
E4
BLUP 2.47 0.31 1.76 3.27 0.23 -0.43 12.47
降烟碱NOR (μg g-1) E1 323.24 92.82 113.16 586.11 0.15 -0.52 28.72 24.04
E2 197.69 50.33 74.67 356.27 0.54 0.36 25.46
E3 390.08 92.74 137.16 673.68 -0.04 -0.10 23.78
E4 312.18 64.27 154.84 467.82 0.14 -0.36 20.59
BLUP 305.66 26.84 240.70 387.73 0.09 -0.14 8.78
假木贼碱ANAB (μg g-1) E1 184.86 55.88 71.62 378.56 0.21 -0.31 30.23 32.87
E2 131.14 33.32 66.45 248.40 0.56 0.35 25.41
E3 201.90 56.25 60.71 364.08 0.48 0.10 27.86
E4 185.95 46.73 95.35 307.93 0.24 -0.64 25.13
BLUP 175.91 21.59 128.49 233.97 0.29 -0.51 12.28
新烟草碱ANAT (μg g-1) E1 423.22 123.71 152.32 845.40 0.12 -0.24 29.23 33.09
E2 278.98 85.46 110.45 570.15 0.46 0.27 30.63
E3 438.77 123.22 160.60 896.84 0.68 0.98 28.08
E4 358.88 95.42 139.84 604.16 0.25 -0.60 26.59
BLUP 374.94 48.42 264.46 528.55 0.36 -0.06 12.92

Fig. 1

Phenotypic correlation and genetic correlation of alkaloid traits in four types of environment a-d: phenotypic correlation in 2018 in Shiin, in 2018 in Yanhe, in 2019 in Shilin, and in 2020 in Shilin. e: genetic correlation. *, **, and *** denote significance at the 0.05, 0.01, and 0.001 probability levels, respectively. Abbreviations are the same as those given in Table 1."

Fig. 2

Marker density distribution of linkage map Redder color represents denser marker region and each black line shows the marker position."

Table 2

Summary of two types of markers in 24 linkage groups"

连锁群
Linkage group
标记总数
Number of markers
SNP数
Number of SNPs
InDel数
Number of InDels
Bin数
Number of bin markers
遗传距离
Genetic distance (cM)
平均遗传距离
Average genetic
distance (cM)
最大间距
Maximum
interval (cM)
LG1 4992 4878 114 335 122.53 0.366 3.51
LG2 4654 4422 232 393 148.74 0.378 2.77
LG3 4150 3987 163 459 182.63 0.398 12.42
LG4 3119 2940 179 399 133.28 0.334 7.82
LG5 2939 2819 120 315 110.54 0.351 4.07
LG6 2865 2786 79 440 201.11 0.457 17.47
LG7 2839 2698 141 270 112.76 0.418 3.89
LG8 2177 2054 123 322 180.90 0.562 9.90
LG9 1969 1892 77 304 141.53 0.466 22.87
LG10 1915 1826 89 315 123.29 0.391 4.81
LG11 1833 1742 91 326 156.48 0.480 16.23
LG12 1513 1409 104 253 148.98 0.589 27.35
LG13 1509 1416 93 388 166.83 0.430 4.25
LG14 1496 1417 79 283 133.81 0.473 4.07
LG15 1262 1203 59 403 198.03 0.491 4.07
LG16 1235 1172 63 344 168.90 0.491 5.94
LG17 1054 993 61 184 111.99 0.609 10.09
LG18 877 828 49 288 150.04 0.521 4.44
LG19 873 829 44 195 101.54 0.521 4.81
LG20 862 812 50 253 141.20 0.558 14.41
LG21 802 755 47 270 164.38 0.609 7.24
LG22 620 587 33 244 153.23 0.628 5.00
LG23 290 275 15 203 191.41 0.943 9.33
LG24 284 272 12 106 55.75 0.526 5.18
总计Total 46,129 44,012 2117 7292 3499.88 0.480 27.35

Table 3

Additive effect and additive-by-environment interaction effects of detected QTLs for alkaloids"

性状
Trait
位点
QTL
连锁群
LG
左侧标记
M-
右侧标记
M+
位置
Position
(cM)
区间范围
Support interval (cM)
加性效应
a
加性与环境互作效应 贡献率
ae1 ae2 ae3 ae4 ha2(%) hae2(%)
总植物碱TPA (%) qTPA6 6 Nitab4.5_0026397_260_SNP Nitab4.5_0468967_662_SNP 38.3 34.0-40.7 0.1626*** 0.1265** 3.21 1.25
qTPA9-1 9 Nitab4.5_0171306_975_SNP Nitab4.5_0000110_495033_SNP 1.0 0.0-3.0 0.1212*** 2.28 0.00
qTPA14 14 Nitab4.5_0286260_185_SNP Nitab4.5_0007629_107938_SNP 112.5 110.0-114.6 -0.3037*** 10.97 0.00
烟碱NIC (%) qNIC6 6 Nitab4.5_0095945_611_SNP Nitab4.5_0000743_512482_SNP 36.1 32.9-39.7 0.1789*** 0.0924* -0.1017* - 3.70 0.89
qNIC14 14 Nitab4.5_0007629_107938_SNP Nitab4.5_0121404_652_SNP 113.6 111.0-115.6 -0.2933*** - 10.04 0.00
降烟碱NOR (μg g-1) qNOR6 6 Nitab4.5_0468967_662_SNP Nitab4.5_0384377_155_SNP 38.4 35.1-39.4 16.2771*** 12.8686** -10.7226* 11.6036** -13.9089* 2.38 1.26
qNOR7 7 Nitab4.5_0318723_531_SNP Nitab4.5_0008152_101211_SNP 72.0 70.3-73.0 -10.5465*** 1.92 0.00
qNOR11 11 Nitab4.5_0558151_555_SNP Nitab4.5_0484178_611_SNP 151.1 150.0-156.5 6.5518** 12.0254** 0.58 0.80
qNOR14 14 Nitab4.5_0092225_197_SNP Nitab4.5_0286260_185_SNP 111.0 108.9-113.6 -19.2023*** 3.28 0.00
假木贼碱ANAB (μg g-1) qANAB6 6 Nitab4.5_0026397_260_SNP Nitab4.5_0468967_662_SNP 37.3 35.1-39.4 12.7296*** 10.2749*** -6.1859* 4.80 1.64
qANAB9-1 9 Nitab4.5_0171306_975_SNP Nitab4.5_0000110_495033_SNP 1.0 0.0-2.5 8.7332*** 2.91 0.00
qANAB14 14 Nitab4.5_0286260_185_SNP Nitab4.5_0007629_107938_SNP 112.5 110.0-114.6 -20.1681*** 11.57 0.00
新烟草碱ANAT (μg g-1) qANAT6 6 Nitab4.5_0026397_260_SNP Nitab4.5_0468967_662_SNP 37.3 36.2-39.4 33.035*** 22.9189*** -21.5076* 6.49 1.81
qANAT9 9 Nitab4.5_0171306_975_SNP Nitab4.5_0000110_495033_SNP 0 0.0-1.5 17.95*** 1.85 0.00
qANAT14 14 Nitab4.5_0286260_185_SNP Nitab4.5_0007629_107938_SNP 111.5 110.0-114.6 -41.9745*** 10.77 0.00

Table 4

Effects and heritabilities of additive-by-additive epistasis and their interaction with environment of QTLs detected for alkaloid traits"

性状
Trait
位点i
QTLi
位点i的两侧标记
Intervali
位置
Positioni
(cM)
区间范围
Rangei
(cM)
位点j
QTLj
位点j的两侧标记
Intervalj
位置
Positionj
(cM)
区间范围
Rangej
(cM)
上位性效应
aa
上位性与环境互作效应 贡献率
aae1 aae2 aae3 aae4 $\mathrm{h}_{\mathrm{asa}}^{2}$
(%)
$\mathrm{h}_{\cos }^{2}$
(%)
总植物碱TPA (%) qTPA1 Nitab4.5_0001423_298079_SNP-Nitab4.5_0007238_116369_SNP 55.4 52.6-57.5 qTPA9-2 Nitab4.5_0652147_514_SNP-Nitab4.5_0000051_663607_SNP 128.2 127.1-129.5 -0.1093* 0.1711** 0.00 1.16
烟碱NIC (%) qNIC9 Nitab4.5_0104939_1831_SNP-Nitab4.5_0477966_676_SNP 137.4 134.8-139.5 qNIC12 Nitab4.5_0000615_20115_Indel-Nitab4.5_0108357_1594_SNP 103.4 101.0-104.4 -0.1455*** - 2.31 0.00
降烟碱NOR
(μg g-1)
qNOR12-1 Nitab4.5_0389330_419_SNP-Nitab4.5_0002082_72841_SNP 89.4 87.7-90.4 qNOR21-1 Nitab4.5_0006357_88789_SNP-Nitab4.5_0006203_164411_SNP 75.8 73.6-76.8 -7.5006** 1.03 0.00
qNOR12-2 Nitab4.5_0047695_600_Indel-Nitab4.5_0013671_17800_Indel 98.6 95.3-99.6 qNOR21-2 Nitab4.5_0002795_109963_SNP-Nitab4.5_0051563_356_SNP 81.3 78.9-83.6 -5.2883* 0.15 0.00
假木贼碱ANAB
(μg g-1)
qANAB9-2 Nitab4.5_0104939_1831_SNP-Nitab4.5_0477966_676_SNP 136.4 134.8-137.5 qANAB12 Nitab4.5_0002161_245575_SNP-Nitab4.5_0000615_20115_Indel 103.3 101.0-104.4 -7.7137*** 1.76 0.00
新烟草碱ANAT
(μg g-1)
qANAT3 Nitab4.5_0020528_167_SNP-Nitab4.5_0001196_316885_SNP 17.2 16.0-18.4 qANAT7 Nitab4.5_0130803_641_SNP-Nitab4.5_0010558_34998_SNP 20.4 13.2-23.2 -8.8321** 12.2295** 0.51 0.81

Table 5

List of candidate genes for major QTLs"

位点
QTL
物理位置
Position (bp)
候选基因ID
Gene ID
起始位置
Start position (bp)
终止位置
End position (bp)
基因功能描述
Gene function
qTPA14
qANAB14
qANAT14
chr8: 7243916-7447394 Nt08g00269 7307457 7315038 类似ADP-核糖基化因子GTP酶激活蛋白AGD8 Probable ADP-ribosylation factor GTPase-activating protein AGD8
Nt08g00270 7315990 7323983 类泛素羧基末端水解酶21 Ubiquitin carboxyl-terminal hydrolase 21-like
Nt08g00271 7331412 7334559 未鉴定蛋白LOC104211529 Uncharacterized protein LOC104211529
Nt08g00272 7335169 7337638 未鉴定蛋白LOC109242621亚型X2 Uncharacterized protein LOC109242621 isoform X2
Nt08g00273 7406451 7416964 类含有锚蛋白重复序列蛋白At5g02620 Ankyrin repeat-containing protein At5g02620-like
Nt08g00274 7430649 7431218 未鉴定蛋白LOC107790963 Uncharacterized protein LOC107790963
qNIC14 chr8: 6624235-7243916 Nt08g00249 6655849 6662737 类蛋白磷酸酶2C 29 Protein phosphatase 2C 29-like
Nt08g00250 6664408 6681005 类蛋白磷酸酶2C 29 Protein phosphatase 2C 29-like
Nt08g00251 6819300 6826090 类蛋白磷酸酶2C 29 Protein phosphatase 2C 29-like
Nt08g00252 6827921 6832618 类叶绿体蛋白ABCI7 Protein ABCI7, chloroplastic-like
Nt08g00253 6857681 6858055 未鉴定蛋白LOC104089357 Uncharacterized protein LOC104089357
Nt08g00254 6867626 6872883 类铝激活苹果酸转运蛋白12 Aluminum-activated malate transporter 12-like
Nt08g00255 6875043 6879809 MND1-相互作用蛋白1 MND1-interacting protein 1
Nt08g00256 6885824 6888724 类植物细胞内Ras组相关LRR蛋白5 Plant intracellular Ras-group-related LRR protein 5-like
Nt08g00257 6949292 6960262 类AP-2复合体亚基mu AP-2 complex subunit mu-like
Nt08g00258 6963535 6969302 部分类AT-hook基序核定位蛋白10 AT-hook motif nuclear-localized protein 10-like, partial
Nt08g00259 6971645 6972022 未鉴定蛋白LOC107812243 Uncharacterized protein LOC107812243
Nt08g00260 6978849 6981270 类AT-hook基序核定位蛋白23 AT-hook motif nuclear-localized protein 23-like
Nt08g00261 7068807 7069085 未鉴定蛋白LOC104241148 Uncharacterized protein LOC104241148
Nt08g00262 7077078 7083605 未鉴定蛋白LOC104246313 Uncharacterized protein LOC104246313
Nt08g00263 7089737 7091966 未鉴定蛋白LOC107821627 Uncharacterized protein LOC107821627
Nt08g00264 7124300 7125049 未鉴定蛋白LOC104246315 Uncharacterized protein LOC104246315
Nt08g00265 7128787 7129137 未鉴定蛋白LOC107817882 Uncharacterized protein LOC107817882
Nt08g00266 7133456 7135411 类转录因子MYC2 Transcription factor MYC2-like
Nt08g00267 7222657 7230856 未鉴定蛋白LOC109206945 Uncharacterized protein LOC109206945
Nt08g00268 7231266 7233911 未鉴定蛋白LOC109207164 Uncharacterized protein LOC109207164
[1] 邓建强, 刘利平, 王洪炜, 庄涛, 代辉, 陆承念, 刘俊. 恩施烟区烤烟上部叶总植物碱主控因素分析. 湖北农业科学, 2021, 60(6): 70-75.
Deng J Q, Liu L P, Wang H W, Zhuang T, Dai H, Lu C N, Liu J. Analysis on main control factors of total plant alkaloid in upper leaf of flue-cured tobacco in Enshi tobacco area. Hubei Agric Sci, 2021, 60(6): 70-75. (in Chinese with English abstract)
[2] 王威威, 席飞虎, 杨少峰, 江丽芳, 王峰吉. 烟草烟碱合成代谢调控研究进展. 亚热带农业研究, 2016, 12(1): 62-67.
Wang W W, Xi F H, Yang S F, Jiang L F, Wang F J. Progress on nicotine metabolism regulation in tobacco. Subtrop Agric Res, 2016, 12(1): 62-67. (in Chinese with English abstract)
[3] 李超, 史宏志, 刘国顺. 烟草烟碱转化及生物碱优化研究进展. 河南农业科学, 2007, (6): 14-17.
doi: 10.3969/j.issn.1004-3268.2007.06.004
Li C, Shi H Z, Liu G S. Research progress on nicotinic conversion and alkaloid optimization. J Henan Agric Sci, 2007, (6): 14-17. (in Chinese)
[4] 林雨晟, 金洪石, 张皓楠, 金江华, 郭伟, 李玉娥, 赵铭钦, 刘鹏飞. 高效液相色谱同时检测不同类型烟叶中的多种生物碱含量. 中国烟草科学, 2021, 42(3): 83-89.
Lin Y S, Jin H S, Zhang H N, Jin J H, Guo W, Li Y E, Zhao M Q, Liu P F. Simultaneous determination of alkaloids in different types of tobacco by HPLC. Chin Tob Sci, 2021, 42(3): 83-89. (in Chinese with English abstract)
[5] 童治军, 焦芳婵, 陈学军, 吴兴富, 方敦煌, 肖炳光. 7个烤烟产量相关性状的QTL定位分析. 西北植物学报, 2018, 38: 1235-1243.
Tong Z J, Jiao F C, Chen X J, Wu X F, Fang D H, Xiao B G. Mapping of quantitative trait loci underlying seven yield-related traits in flue-cured tobacco (Nicotiana tabacum L.). Acta Bot Boreali-Occident Sin, 2018, 38: 1235-1243. (in Chinese with English abstract)
[6] 王思齐, 李海洋, 李荣华, 夏岩石, 张振臣, 袁清华, 郭培国. 烟草青枯病抗病的动态QTL分析. 中国烟草科学, 2020, 41(3): 1-8.
Wang S Q, Li H Y, Li R H, Xia Y S, Zhang Z C, Yuan Q H, Guo P G. Dynamic QTL analysis for bacterial wilt resistance in tobacco. Chin Tob Sci, 2020, 41(3): 1-8. (in Chinese with English abstract)
[7] 张雨生, 蒋彩虹, 胡晓莉, 赵强, 耿锐梅, 杨爱国, 程立锐, 王元英. 烟草抗赤星病主效QTL的候选基因初步筛选. 分子植物育种, 2018, 16: 4325-4332.
Zhang Y S, Jiang C H, Hu X L, Zhao Q, Geng R M, Yang A G, Cheng L R, Wang Y Y. Preliminary screening of candidate genes for main QTL related with resistance to brown spot in tobacco. Mol Plant Breed, 2018, 16: 4325-4332. (in Chinese with English abstract)
[8] 牟建英, 钱玉梅, 任民, 刘艳华, 张兴伟, 王志德, 潘应花. 烟草白粉病抗性基因的QTL定位. 中国烟草学报, 2013, 19(4): 105-108.
Mou J Y, Qian Y M, Ren M, Liu Y H, Zhang X W, Wang Z D, Pan Y H. QTL analysis of resistance gene to powdery mildew in tobacco. Acta Tab Sin, 2013, 19(4): 105-108. (in Chinese with English abstract)
[9] 姜自鹏, 赵会纳, 苑广迪, 蒋彩虹, 刘旦, 余世洲, 雷波, 程立锐, 杨爱国, 付宪奎. 烟草株高和叶数性状QTL定位及候选基因预测. 中国烟草科学, 2022, 43(2): 1-6.
Jiang Z P, Zhao H N, Yuan G D, Jiang C H, Liu D, Yu S Z, Lei B, Cheng L R, Yang A G, Fu X K. QTL mapping and prediction of candidate genes for plant height and leaf number in tobacco. Chin Tob Sci, 2022, 43(2): 1-6 (in Chinese with English abstract)
[10] Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69-91.
doi: 10.1007/s11032-006-9019-0
[11] Tong Z J, Xiu Z H, Yao M, Fang D H, Chen X J, Hu Y F, Zhou J H, He W M, Jiao F C, Zhang C, Zhao S C, Jin H, Jian J B, Xiao B G. Quantitative trait locus mapping and genomic selection of tobacco (Nicotiana tabacum L.) based on high-density genetic map. Plant Biotechnol Rep, 2021, 15: 845-854.
doi: 10.1007/s11816-021-00713-1
[12] Tong Z J, Fang D H, Chen X J, Jiao F C, Zhang Y H, Li Y P, Xiao B G. Genome-wide association study of leaf chemistry traits in tobacco. Breed Sci, 2020, 70: 253-264.
doi: 10.1270/jsbbs.19067
[13] 肖炳光, 卢秀萍, 焦芳蝉, 李永平, 孙玉合, 郭兆奎. 烤烟几种化学成分的QTL初步分析. 作物学报, 2008, 34: 1762-1769.
doi: 10.3724/SP.J.1006.2008.01762
Xiao B G, Lu X P, Jiao F C, Li Y P, Sun Y H, Guo Z K. Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin, 2008, 34: 1762-1769. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01762
[14] Melchinger A E, Utz H F, Piepho H P, Zeng Z B, Schön C C. The role of epistasis in the manifestation of heterosis: a systems- oriented approach. Genetics, 2007, 177: 1815-1825.
doi: 10.1534/genetics.107.077537 pmid: 18039883
[15] 国家烟草专卖局. 烟草及烟草制品总植物碱的测定连续流动法:YC/T 160- 2002. 北京: 中国标准出版社, 2002.
State Tobacco Monopoly Administration. Tobacco and Tobacco Products-Determination of Total Alkaloids-Continuous Flow Method: YC/T 160- 2002. Beijing: Standards Press of China, 2002. (in Chinese)
[16] 国家烟草专卖局. 烟草及烟草制品烟碱、 降烟碱、新烟碱、麦斯明和假木贼碱的测定气相色谱-质谱联用法:YC/T 383- 2010. 北京: 中国标准出版社, 2010.
State Tobacco Monopoly Administration. Tobacco and Tobacco Products-Determination of Nicotine, Nornicotine, Anatabine, Myosmine and Anabasine-GC-MSD Method:YC/T 383- 2010. Beijing: Standards Press of China, 2010. (in Chinese)
[17] Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One, 2016, 11: e0156744.
doi: 10.1371/journal.pone.0156744
[18] Li S, Tian Y H, Wu K, Ye Y F, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth- metabolism coordination for sustainable agriculture. Nature, 2018, 560: 595-600.
doi: 10.1038/s41586-018-0415-5
[19] Chen Y X, Chen Y S, Shi C M, Huang Z B, Zhang Y, Li S K, Li Y, Ye J, Yu C, Li Z, Zhang X Q, Wang J, Yang H M, Fang L, Chen Q. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 2018, 7: 1-6.
doi: 10.1093/gigascience/gix120 pmid: 29220494
[20] Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017, 18: 488.
doi: 10.1186/s12864-017-3849-5
[21] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[22] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[23] Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272
[24] Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. LinkageMapView: rendering high-resolution linkage and QTL maps. Bioinformatics, 2018, 34: 306-307.
doi: 10.1093/bioinformatics/btx576 pmid: 28968706
[25] 朱军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报(自然科学版), 1999, 33: 327-335.
Zhu J. Methods for locating genes for complex quantitative traits using mixed linear models. J Zhejiang Univ (Nat Sci Edn), 1999, 33: 327-335. (in Chinese)
[26] Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721-723.
doi: 10.1093/bioinformatics/btm494 pmid: 18202029
[27] Min M K, Jang M, Lee M, Lee J, Song K, Lee Y, Choi K Y, Robinson D G, Hwang I. Recruitment of Arf1-GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth. Plant Physiol, 2013, 161: 676-691.
doi: 10.1104/pp.112.209148 pmid: 23266962
[28] Wang L, Li H, Li J, Li G, Zahid M S, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine (Vitis vinifera L.) under root restriction. Front Plant Sci, 2022, 13: 959693.
doi: 10.3389/fpls.2022.959693
[29] Pozo M J, Van Der Ent S, Van Loon L C, Pieterse C M J. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol, 2008, 180: 511-523.
doi: 10.1111/j.1469-8137.2008.02578.x pmid: 18657213
[30] 苏雷, 姜岸鸣, 陈常伟, 吴克松, 程新胜. 仿生型信号分子对烟草生物碱的抑制作用机制. 烟草科技, 2013, (2): 72-76.
Su L, Jiang A M, Chen C W, Wu K S, Cheng X S. Mechanism of inhibition action of bionic signal molecule to tobacco alkaloid. Tob Sci Technol, 2013, (2): 72-76 (in Chinese with English abstract).
[31] Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104-111.
doi: 10.1007/s001220000528
[32] 孙晓雪, 孙健, 王敬国, 刘化龙, 赵宏伟, 梁银培, 邹德堂. 水稻赖氨酸和总黄酮含量的QTL定位及环境互作分析. 核农学报, 2017, 31: 1684-1692.
doi: 10.11869/j.issn.100-8551.2017.09.1684
Sun X X, Sun J, Wang J G, Liu H L, Zhao H W, Liang Y P, Zou D T. QTL mapping and environment interaction analysis of lysine content and total content of flavonoids in rice. J Nucl Agric Sci, 2017, 31: 1684-1692. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2017.09.1684
[1] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[2] CUI Fang-Fang, MENG Lin-Feng, LIU Miao-Miao, ZHANG Jian-Qiang, WANG Jian-Ge, LIU Qi-Yuan. Characteristics of MADS-box and SUPERMAN genes in tobacco cytoplasmic male sterile line K326 [J]. Acta Agronomica Sinica, 2023, 49(12): 3204-3214.
[3] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[4] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[5] DONG Qing-Yuan,MA De-Qing,YANG Xue,LIU Yong,HUANG Chang-Jun,YUAN Cheng,FANG Dun-Huang,YU Hai-Qin,TONG Zhi-Jun,SHEN Jun-Ru,XU Yin-Lian,LUO Mei-Zhong,LI Yong-Ping,ZENG Jian-Min. Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank [J]. Acta Agronomica Sinica, 2020, 46(6): 869-877.
[6] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[7] Yu-Si SHAN, Zheng-Qi XIN, Xiao HE, Huan-Huan DAI, Neng-Biao WU. Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulation in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress [J]. Acta Agronomica Sinica, 2020, 46(12): 1894-1904.
[8] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[9] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[10] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[11] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[12] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[13] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[14] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[15] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .