Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1894-1904.doi: 10.3724/SP.J.1006.2020.04050

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulation in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress

Yu-Si SHAN1,2(), Zheng-Qi XIN1,2, Xiao HE1,2, Huan-Huan DAI1,2, Neng-Biao WU1,2,*()   

  1. 1School of Life Science, Southwest University, Chongqing 400715, China
    2Key Laboratory of Eco-environments in Three Gorges Region, Ministry of Education, Chongqing 400715, China
  • Received:2020-02-28 Accepted:2020-06-02 Online:2020-12-12 Published:2020-07-28
  • Contact: Neng-Biao WU E-mail:shanyusi3354@foxmail.com;wunb@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(30500041)

Abstract:

In order to preliminarily explore the mechanism of TAs metabolic pathway in A. belladonna treated with exogenous methyl jasmone under UV-B stress, the effects on the contents of hyoscyamine and scopolamine, the upstream products in alkaloid synthesis, signal molecule and the expression level of key enzyme genes of secondary metabolism were studied under different concentrations of exogenous MeJA and different treatment time under using A. belladonna as materials. UV-B stress treatment significantly reduced the contents of hyoscyamine and scopolamine, inhibited the accumulation of precursors in the TAs synthesis pathway, which harmful to TAs synthesis. The content of TAs in A. belladonna increased to some extent, the contents of precursor amino acids (ornithine, arginine), polyamine content and key enzymes activities in the synthesis of putrescine in the secondary metabolic pathway all increased to some extent after treatment with the appropriate concentration of MeJA. The concentrations of signal molecule NO firstly increased and then decreased with the rising MeJA concentration, and reached the highest when MeJA concentration was 250 μmol L -1. The expression of key enzyme genes in TAs synthesis pathway showed that exogenous MeJA could increase the relative gene expression levels of TR I, PPAR, H6H to some extent. Those indicated that exogenous MeJA could induce the increase in the contents of upstream products in TAs synthesis by stimulating the burst of NO resulted in more precursor materials for the TAs synthesis pathway and affect the high expression of TR I, PPAR and H6H. It alleviated the inhibiton of UV-B stress on TAs of A. belladonna and increased the contents of hyoscyamine and scopolamine effectively. The results provided a theoretical basis for further studying the mechanism of exogenous elicitors to regulate the TAs secondary metabolic pathway of A. belladonn under stress, and effectively improved the stress resistance of A. belladonn and the accumulation of medicinal ingredients in actual production.

Key words: methyl jasmonate, UV-B stress, Atropa belladonna L., tropane alkaloids, secondary metabolism

Table 1

Primer for quantitative RT-PCR"

基因
Gene
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
PGK TCGCTCTTGGAGAAGGTTGAC CTTGTCCGCAATCACTACATCAG
PMT CCTACTTACCCTACTGGTGTTATC GCGAAAGATGGCAAAATAAAAGC
TR I TTCTTTGCTTCCCTGCTGCTTC CAGGCCAACCTTAGTATCACACAG
PPAR GATTGGAGTTGTTGGATTGG CCTTGAAGTGTAAGAGATGGA
H6H TTCCACTTGAGCAGAAAGCAAAGC CCTCATGGTCAACTTCCTCACTTCC

Table 2

Effects on the hyoscyamine and scopolamine contents under exogenous methyl jasmonate with different concentrations in A. belladonna leaves under UV-B stress (μg g-1 DW)"

指标
Indicator
处理组
Treatment group
处理时间Treatment time
4 d 8 d 12 d 16 d
莨菪碱
Hyoscyamine
CK1 477.988±30.032 d 464.993±39.364 a 510.286±29.327 a 489.386±33.957 a
CK2 514.323±36.595 c 403.706±14.900 c 350.179±35.316 d 295.220±30.438 d
T1 527.659±38.739 bc 423.530±36.157 bc 375.603±19.982 c 312.172±19.933 cd
T2 542.565±35.559 bc 468.808±27.539 a 392.611±37.487 bc 361.054±22.242 bc
T3 581.520±17.200 a 447.993±24.571 b 425.491±47.568 b 384.890±44.869 b
T4 564.200±33.989 ab 430.305±15.919 bc 369.667±40.042 c 332.059±26.077 c
东莨菪碱
Scopolamine
CK1 267.673±24.260 a 261.248±22.428 a 294.230±42.998 a 282.621±28.477 a
CK2 221.892±20.219 c 198.795±34.491 c 174.729±14.562 d 121.804±15.205 d
T1 243.889±28.790 ab 217.900±17.821 bc 193.653±21.253 cd 130.244±24.996 cd
T2 237.625±28.217 ab 236.775±13.461 ab 221.873±19.211 b 150.869±26.035 c
T3 248.261±20.375 ab 234.134±26.418 b 229.996±29.857 b 185.867±23.527 b
T4 225.705±14.739 bc 220.173±26.487 bc 208.852±24.722 bc 164.412±30.129 c

Fig. 1

Effects on the contents of Ornithine and Arginine under exogenous methyl jasmonate with different concentrations in A. belladonna leaves under UV-B stress Bars superscripted by different lowercase letters show significant differences among different treatment groups at P < 0.05. Treatments are the same as those given in Table 2."

Fig. 2

Effects on ODC and ADC activities under exogenous methyl jasmonate with different concentrations in A. belladonna leaves under UV-B stress Bars superscripted by different lowercase letters show significant differences among different treatment groups at P < 0.05. Treatments are the same as those given in Table 2."

Fig. 3

Effects on Polyamine contents (A), PAs contents (B) and (Spm+Spd)/Put (C) under exogenous methyl jasmonate with different concentrations in A. belladonna leaves under UV-B stress Bars superscripted by different lowercase letters show significant differences among different treatment groups at P < 0.05. Treatments are the same as those given in Table 2."

Fig. 4

Effects on NO concentration under exogenous methyl jasmonate with different concentrations in A. belladonna leaves under UV-B stress Bars superscripted by different lowercase letters show significant differences among different treatment groups at P < 0.05. Treatments are the same as those given in Table 2."

Fig. 5

Effects on relative gene expression level of PMT, TR I, PPAR, H6H under exogenous methyl jasmonate with different concentrations in A. belladonna leaves (A) and roots (B) under UV-B stress Bars superscripted by different lowercase letters show significant differences among different treatment groups at P < 0.05. Treatments are the same as those given in Table 2."

[1] 汪开治 . 有毒药用植物颠茄. 植物杂志, 2003, ( 2):26-27.
Wang K Z . Atropa belladonna L.: the poisonous medicinal plant. Plants, 2003, ( 2):26-27 (in Chinese).
[2] Liu Y, Zhang J T, Yang J H . Comparative study on the pharmacological effects of some scopolia alkaloid derivatives. Acta Pharm Sin, 1987,22:725-729.
[3] Facchini P J . ALKALOID BIOSYNTHESIS IN PLANTS: biochemistry, cell Biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol, 2001,52:29-66.
doi: 10.1146/annurev.arplant.52.1.29 pmid: 11337391
[4] 卢克欢, 苏贝贝, 郭双, 张翠平, 韦悦, 吴能表 . UV-B辐射对颠茄氮代谢及次生代谢产物含量的影响. 中国生物化学与分子生物学报, 2017,33:1062-1069.
Lu K H, Su B B, Guo S, Zhang C P, Wei Y, Wu N B . Effects of UV-B on the activities of nitrogen metabolism and secondary metabolites of Atropa belladonna. Chin J Biochem Mol Biol, 2017,33:1062-1069 (in Chinese with English abstract).
[5] 徐佳妮, 雷梦琦, 鲁瑞琪, 赵杨阳, 黄萱 . UV-B辐射增强对植物影响的研究进展. 基因组学与应用生物学, 2015,34:1347-1352.
Xu J N, Lei M Q, Lu R Q, Zhao Y Y, Huang X . Research progress on the effect of enhanced UV-B radiation on plants. Genomics Appl Biol, 2015,34:1347-1352 (in Chinese with English abstract).
[6] 涂云, 杨正聪, 权佳锋, 蔡昊城, 柳文凤, 杨东, 任汝周, 卢红 . UV-B辐射强度对烟苗生长及抗氧化酶的影响. 贵州农业科学, 2019,47(4):13-18.
Tu Y, Yang Z C, Quan J F, Cai H C, Liu W F, Yang D, Ren R Z, Lu H . Effects of enhanced UV-B radiation on growth and antioxidant enzyme of flue-cured tobacco. Guizhou Agric Sci, 2019,47(4):13-18 (in Chinese with English abstract).
[7] Liu J P, Hu J, Liu Y H, Yang C P, Zhuang Y F, Guo X L, Li Y J, Zhang L S . Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiol Mol Biol Plants, 2018,24:349-358.
doi: 10.1007/s12298-018-0529-0 pmid: 29692543
[8] 雒晓鹏, 朱冬寅, 黄云吉, 李茂菲, 姚攀锋, 高飞, 李成磊, 赵海霞 . 茉莉酸甲酯对芽期苦荞黄酮积累及相关基因表达的影响. 基因组学与应用生物学, 2015,34:1040-1046.
Luo X P, Zhu D Y, Huang Y J, Li M F, Yao P F, Gao F, Li C L, Zhao H X . Effects of methyl jasmonate accumulation of flavonoids and related gene expression of buckwheat spouts. Genomics Appl Biol, 2015,34:1040-1046 (in Chinese with English abstract).
[9] 杨怡, 张翠平, 刘兴, 韦悦, 吴能表 . 茉莉酸甲酯对颠茄托品烷类生物碱代谢及相关基因表达的影响. 中国中药杂志, 2018,43:4044-4049.
Yang Y, Zhang C P, Liu X, Wei Y, Wu N B . Effects of methyl jasmonate on metabolism of tropane alkaloids and expression of relate genes in Atropa belladonna. China J Chin Mater Med, 2018,43:4044-4049 (in Chinese with English abstract).
[10] 李红利, 孙振元, 赵梁军, 韩蕾, 巨关升 . 茉莉酸类物质对植物生长发育及抗性的影响. 中国农学通报, 2009,25(16):167-172.
Li H L, Sun Z Y, Zhao Z Y, Han L, Ju G S . Effect of jasmonic acid and methyl jasmonate on the plant development and resistance. Chin Agric Sci Bull, 2009,25(16):167-172 (in Chinese with English abstract).
[11] 蔡昆争, 董桃杏, 徐涛 . 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用. 生态环境, 2006,15:397-404.
Cai K Z, Dong T X, Xu T . The physiological roles and resistance control in stress environment of jasmonates. Ecol Environ, 2006,15:397-404 (in Chinese with English abstract).
[12] Fedina I, Nedeva D, Georgieva K, Velitchkova M . Methyl jasmonate counter act UV-B stress in barley seedlings. J Agron Crop Sci, 2009,195:204-212.
doi: 10.1111/jac.2009.195.issue-3
[13] 郭玉梅 . UV-B辐射下茉莉酸甲酯对铁皮石斛生长和主要活性成分的影响研究. 广东药科大学硕士学位论文, 广东广州, 2017.
Guo Y M . The Effects of Methyl Jasmonate on Growth and Main Active Ingredients of Dendrobium officinale Kimura et Migo under UV-B Radiation. MS Thesis of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract).
[14] 苏贝贝 . UV-B辐射对颠茄生理特性及次生代谢产物含量的影响. 西南大学硕士学位论文, 重庆, 2016.
Su B B . Effects of UV-B on Physiological Characteristics and Secondary Metabolites Content of the Atropa belladonna L. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[15] Zárate R, Hermosin B, Cantos M, Troncoso A . Tropane alkaloid distribution in Atropa baetica plants. J Chemical Ecol, 1997,23:2059-2066.
doi: 10.1023/B:JOEC.0000006489.76006.cb
[16] 黄爱清, 苏国成, 王璋 . L-鸟氨酸快速定量检测方法. 食品与发酵工业, 2005, ( 12):98-102.
Huang A Q, Su G C, Wang Z . Rapid quantitative determination for L-ornithine analysis. Food Ferment Ind, 2005, ( 12):98-102 (in Chinese with English abstract).
[17] 胡桂娟, 刘寄明, 刘嘉芬 . 化学法测定精氨酸总量. 落叶果树, 1995, ( 1):22.
Hu G J, Liu J M, Liu J F . Chemical determination of total arginine. Deciduous Fruits, 1995, ( 1):22 (in Chinese).
[18] 赵福庚, 刘友良 . 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法. 植物生理学通讯, 2000,36:442-445.
Zhao F G, Liu Y L . Study on determination of ADC and TGase activities. Plant Physiol Commun, 2000,36:442-445 (in Chinese).
[19] 康朵兰 . 马铃薯大西洋块茎在休眠萌发和低温贮藏期的生理生化变化. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Kang D L . Physiologieal and Biochemical Changes of Potato Atlantic Tuber during Dormancy, Sprouting and Cold Storage. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007 (in Chinese with English abstract).
[20] 强玮, 王亚雄, 张巧卓, 李金弟, 夏科, 吴能表, 廖志华 . 颠茄托品烷生物碱合成途径基因表达分析与生物碱积累研究. 中国中药杂志, 2014,39(1):52-58.
Qiang W, Wang Y X, Zhang Q Z, Li J D, Xia K, Wu N B, Liao Z H . Expression pattern of genes involved in tropane alkaloids biosynthesis and tropane alkaloids accumulation in Atropa belladonna. China J Chin Mater Med, 2014,39(1):52-58 (in Chinese with English abstract).
[21] 强玮 . 颠茄TRI基因的克隆、功能验证及超量表达对颠茄托品烷生物碱合成的影响. 西南大学硕士学位论文,重庆, 2012.
Qiang W . Cloning and Characterization of Tropinone Reductase I from Atropa belladonna and Its Overexpression for Enhancing the Tropane Alkaloids Production in Atropa belladonna. MS Thesis of Southwest University, Chongqing, China, 2012 (in Chinese with English abstract).
[22] Qiu F, Yang C, Yuan L, Xiang D, Lan X, Chen M, Liao Z . A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids. Org Lett, 2018,20:7807-7810.
doi: 10.1021/acs.orglett.8b03236 pmid: 30511859
[23] 陆芳勤, 王欣, 沈潼, 周峰 . 多胺代谢与植物环境胁迫. 天津农业科学, 2014,20(3):15-17.
Lu F Q, Wang X, Shen T, Zhou F . Relationship between polyamine metabolism and environmental stress. Tianjin Agric Sci, 2014,20(3):15-17 (in Chinese with English abstract).
[24] 周强 . 渗透溶质、多胺和水孔蛋白在香根草适应盐分和干旱胁迫过程中的作用机理研究. 南京农业大学博士学位论文,江苏南京, 2011.
Zhou Q . Roles of Osmolytes, Polyamines and Aquaporins in Adaptation of Vetiver Grass (Vetiveria zizanioides) to Salt and Drought Stresses. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2011 (in Chinese with English abstract).
[25] 朱胜男 . 信号分子对金钗石斛组培苗次生代谢产物积累的影响. 杭州师范大学硕士学位论文,浙江杭州, 2011.
Zhu S N . Effect of Signaling Molecules on Secondary Metabolites in Tissue culture of Dendrobium nobile. MS Thesis of Hangzhou Normal University, Hangzhou, Zhejiang,China, 2011 (in Chinese with English abstract).
[26] Zhang L, Ding R X, Chai Y R, Bonfill M, Moyano E, Oksman-Caldentey K M, Xu T F, Pi Y, Wang Z N, Zhang H M, Kai G Y, Liao Z H, Sun X F, Tang K X. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA, 2004,101:6786-6791.
doi: 10.1073/pnas.0401391101 pmid: 15084741
[27] 卢衍 . 颠茄pmttrIh6h双基因策略对颠茄毛状根托品烷类生物碱含量的影响. 西南大学硕士学位论文, 重庆, 2012.
Lu Y . The Influence of Two-gene Strategy of Atropa belladonna (pmt, trI, h6h) for the Tropine Alkaloids Content of Atropa Belladonna Hairy Root. MS Thesis of Southwest University, Chongqing, China, 2012 (in Chinese with English abstract).
[28] 阎秀峰, 王洋, 李一蒙 . 植物次生代谢及其与环境的关系. 生态学报, 2007,27:2554-2562.
Yan X F, Wang Y, Li Y M . Plant secondary metabolism and its response to environment. Acta Ecol Sin, 2007,27:2554-2562 (in Chinese with English abstract).
[29] 段永波, 鲁放, 崔婷婷, 赵丰兰, 滕井通, 盛玮, 张爱民, 薛建平 . 非生物诱导子茉莉酸甲酯和水杨酸对半夏悬浮细胞中生物碱代谢的影响. 中国中医药信息杂志, 2017,24(1):87-90.
Duan Y B, Lu F, Cui T T, Zhao F L, Teng J T, Sheng W, Zhang A M, Xue J P . Effects of abiotic elicitors MeJA and SA on alkaloids accumulation and related enzymes metabolism in Pinellia ternata suspension cell cultures. Chin J Inf Tradit Chin Med, 2017,24(1):87-90 (in Chinese with English abstract).
[30] 张翠平 . 茉莉酸甲酯对颠茄主要生物碱含量的影响及其机理. 西南大学硕士学位论文, 重庆, 2017.
Zhang C P . Effect and Mechanism of MeJA on Tropane Alkaloids in Atropa belladonna L. MS Thesis of Southwest University, Chongqing, China, 2017 (in Chinese with English abstract).
[31] Patterson S, O'Hagan D . Biosynthetic studies on the tropane alkaloid hyoscyamine in Datura stramonium; hyoscyamine is stable to in vivo oxidation and is not derived from littorine via a vicinal interchange process. Phytochemistry, 2002,61:323-329.
doi: 10.1016/s0031-9422(02)00200-5 pmid: 12359518
[32] 郭双 . 酵母提取物对颠茄毛状根碳氮代谢及托品烷类生物碱代谢的调控研究. 西南大学硕士学位论文, 重庆, 2018.
Guo S . Effects of Yeast Extract on Carbon and Nitrogen Metabolism and Metabolism of Tropane Alkaloids in Hairy Roots of Atropa belladonna L. MS Thesis of Southwest University, Chongqing, China, 2018 (in Chinese with English abstract).
[33] 王中平 . 颠茄精氨酸脱羧酶基因的克隆与功能分析. 西南大学硕士学位论文, 重庆, 2016.
Wang Z P . Molecular Cloning and Characterization of Two Arginine Decarboxylase Genes in Atropa belladonna. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[34] Kakkar R K, Sawhney V K . Polyamine research in plants: a changing perspective. Physiol Plant, 2002,116:281-292.
doi: 10.1034/j.1399-3054.2002.1160302.x
[35] Smith J, Burritt D, Bannister P . Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul, 2001,35:289-294.
doi: 10.1023/A:1014459232710
[36] Chandok M R, Ytterberg A J, Wijk K J V, Klessing D F . The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the protein of the glycine decarboxylase complex. Cell, 2003,113:469-482.
doi: 10.1016/s0092-8674(03)00350-7 pmid: 12757708
[37] 卢克欢, 刘兴, 杨怡, 廖志华, 吴能表 . UV-B胁迫下Ca 2+对颠茄生理特性与次生代谢产物的调控研究 . 作物学报, 2018,44:1527-1538.
Lu K H, Liu X, Yang Y, Liao Z H, Wu N B . Effect of exogenous Ca 2+ on physiological characteristics and secondary metabolites accumulation of Atropa belladonna L. seedlings under UV-B stress. Acta Agron Sin, 2018,44:1527-1538 (in Chinese with English abstract).
[38] Xu M J, Dong J F, Zhu M Y . Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol, 2005,139:991-998.
doi: 10.1104/pp.105.066407 pmid: 16169960
[39] 徐茂军 . 一氧化氮: 植物细胞次生代谢信号转导网络可能的关键节点. 自然科学进展, 2007,17:1622-1630.
Xu M J . Nitric oxide: a possible key node in the secondary metabolic signal transduction network of plant cells. Prog Nat Sci, 2007,17:1622-1630 (in Chinese).
[40] 刘英甜 . 腐胺诱导白桦悬浮细胞中白桦酯醇积累的生理与分子机制的初步研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2015.
Liu Y T . Preliminary Study on Physiological and Molecular Mechanisms of Betulin Accumulation Induced by Putrescine in Betula platyphylla Suspension Cells. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2015 (in Chinese with English abstract).
[1] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[2] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!