Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1905-1913.doi: 10.3724/SP.J.1006.2020.04035

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.)

Li-Lan ZHANG1,2,3(), Lie-Mei ZHANG1(), Huan-Ying NIU1, Yi XU1,2,3, Yu LI1,2,3, Jian-Min QI1,2, Ai-Fen TAO1,2, Ping-Ping FANG1,2, Li-Wu ZHANG1,2,3,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2020-02-16 Accepted:2020-04-15 Online:2020-05-11 Published:2020-11-25
  • Contact: Li-Wu ZHANG E-mail:1204549467@qq.com;zhangliemei@126.com;lwzhang@fafu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771369);China Agriculture Research System(CARS-19-E06)

Abstract:

Simple sequence repeat (SSR) markers correlated to fiber yield traits would be a beneficial tool for molecular marker-assisted breeding in jute. In this study, 397 SSR markers were screened from 311 jute germplasms by the phenotype identification from 2016 to 2018 and 116 pairs of primers. The correlation analysis between SSR markers and fiber yield related traits by SPSS revealed that the range of the coefficient of variation related to 9 fiber traits was from 13.05% to 76.78%, indicating a comprehensive genetic variation. The correlation analysis of the agronomic traits showed that there were significantly correlations among these traits. The average correlation coefficient between branch height and nodes of main stem was the highest (r = 0.931), followed by the correlation coefficients (r = 0.781) of fresh bark weight per plant and fresh stem weight per plant and the coefficients (r = 0.779) of dry bark weight and fresh bark weight per plant. Analysis of variance (ANOVA) showed that the traits of main stem nodes, number of branches, plant height and branch height were relatively stable in different years with the higher broad heritability capacity. Furthermore, the SSR markers associated with fiber yield related traits were identified by Pearson correlation method. Stepwise regression analysis among each trait associated SSR markers indicated that there were six markers associated significantly with fiber yield related traits, and phenotypic variation explained by each SSR marker varied from 3.9% to 22.5%. These results will accelerate the development of molecular design breeding in jute.

Key words: jute, fiber yield, agronomic traits, SSR, correlation, regression analysis

Table 1

Statistical analysis of 9 traits correlated to fiber yield in jute"

性状
Trait
年份
Year
平均值±标准差
Mean ± SD
最大值
Maximum
最小值
Minimum
变异系数
CV (%)
遗传多样性指数
Shannon-Wiener index
株高PH (cm) 2016 331.97±43.33 459.10 43.33 13.05 1.89
2017 334.69±51.40 482.90 51.40 15.36 2.10
2018 384.37±64.21 514.90 64.21 16.71 2.40
分枝高BH (cm) 2016 110.35±72.04 352.00 6.57 65.29 2.32
2017 106.62±67.36 391.40 4.10 63.17 2.34
2018 170.23±82.87 427.90 5.33 48.68 2.62
茎粗SD (mm) 2016 18.26±2.42 23.72 2.42 13.27 1.82
2017 20.44±3.30 28.96 3.30 16.16 2.23
2018 20.88±3.31 28.37 3.31 15.83 2.17
鲜皮厚FBT (mm) 2016 1.33±0.23 2.00 0.23 17.21 1.95
2017 1.29±0.25 2.02 0.25 19.24 2.08
2018 1.17±0.32 2.05 0.32 27.53 2.46
节数NMS (个) 2016 18.82±13.48 50.30 1.00 71.63 2.11
2017 19.02±14.38 78.70 1.00 75.61 2.23
2018 26.37±14.76 81.33 1.00 55.96 2.48
分枝数NB (个) 2016 19.15±13.81 55.20 2.10 72.12 2.19
2017 20.55±17.41 74.00 1.50 84.73 2.38
2018 18.75±14.39 70.30 2.20 76.78 2.28
单株鲜茎重FSW (g) 2016 682.18±244.1 1462.00 71.75 35.79 2.23
2017 611.51±206.6 1266.00 64.00 33.79 2.14
2018 598.62±231.7 1380.00 97.00 38.71 2.23
单株鲜皮重FBW (g) 2016 172.8±66.20 421.00 43.50 38.31 2.34
2017 131.35±66.09 394.00 7.50 50.31 2.37
2018 128.71±70.57 330.00 8.00 54.83 2.49
单株干皮重DBW (g) 2016 42.92±14.95 141.00 14.95 34.84 1.52
2017 39.32±19.02 110.00 4.00 48.38 1.93
2018 31.00±16.84 104.00 6.00 54.31 1.78

Table 2

Analysis of variance of 9 fiber yield traits in jute"

性状
Trait
差异源
Source
自由度
DF
总方差
SS
均方
MS
P
P-value
广义遗传力
Broad-sense capacity
株高PH 年份Years 2 197,483.34 98,741.67 <0.01 -
品种Varieties 310 2,018,314.68 6,510.69 <0.01 0.81
分枝高BH 年份Years 2 533,367.61 266,683.80 <0.01 -
品种Varieties 310 3,902,352.97 12,588.24 <0.01 0.78
茎粗SD 年份Years 2 461.51 230.76 <0.01 -
品种Varieties 310 5,529.13 17.84 <0.01 0.71
鲜皮厚FBT 年份Years 2 4.90 2.45 <0.01 -
品种Varieties 310 35.52 0.11 <0.01 0.61
节数NMS 年份Years 2 8,788.61 4,394.31 <0.01 -
品种Varieties 310 149,702.87 482.91 <0.01 0.82
分枝数NB 年份Years 2 480.19 240.09 0.019 -
品种Varieties 310 187,378.60 604.45 <0.01 0.90
单株鲜茎重FSW 年份Years 2 1,291,406.03 645,703.01 <0.01 -
品种Varieties 310 28,003,667.06 90,334.41 <0.01 0.72
单株鲜皮重FBW 年份Years 2 270,421.30 135,210.65 <0.01 -
品种Varieties 310 2,529,200.96 8,158.71 <0.01 0.72
单株干皮重DBW 年份Years 2 10,322.48 5,161.24 <0.01 -
品种Varieties 310 104,444.51 336.92 <0.01 0.70

Table 3

Correlation analysis among different years for 9 fiber yield traits in jute"

年份Year 性状
Trait
2016 2017
2017 株高PH 0.727**
分枝高BH 0.835**
茎粗SD 0.489**
鲜皮厚FBT 0.328**
节数NMS 0.774**
分枝数NB 0.806**
单株鲜茎重FSW 0.458**
单株鲜皮重FBW 0.541**
单株干皮重DBW 0.307**
2018 株高PH 0.684** 0.741**
分枝高BH 0.597** 0.626**
茎粗SD 0.344** 0.474**
鲜皮厚FBT 0.177* 0.381**
节数NMS 0.625** 0.635**
分枝数NB 0.725** 0.771**
单株鲜茎重FSW 0.368** 0.370**
单株鲜皮重FBW 0.396** 0.528**
单株干皮重DBW 0.267** 0.398**

Table 4

Correlation analysis among 9 fiber yield traits in jute"

年份
Year
株高
PH
分枝高
BH
茎粗
SD
鲜皮厚
FBT
节数
NMS
分枝数
NB
单株鲜茎重
FSW
单株鲜皮重
FBW
分枝高
BH
2016 0.018
2017 0.302**
2018 0.398**
茎粗
SD
2016 0.537** 0.102
2017 0.715** 0.176**
2018 0.542** 0.215**
鲜皮厚
FBT
2016 0.370** 0.063 0.751**
2017 0.519** 0.074 0.728**
2018 0.385** 0.055 0.688**
节数
NMS
2016 0.098 0.959** 0.104 0.087
2017 0.214** 0.927** 0.115 0.039
2018 0.282** 0.908** 0.159** 0.055
分枝数
NB
2016 0.547** -0.667** 0.321** 0.234** -0.706**
2017 0.442** -0.510** 0.437** 0.411** -0.553**
2018 0.468** -0.435** 0.262** 0.358** -0.508**
单株鲜茎重
FSW
2016 0.509** 0.291** 0.715** 0.634** 0.309** 0.535**
2017 0.596** 0.169** 0.741** 0.646** 0.190** 0.495**
2018 0.709** 0.054 0.662** 0.644** 0.001 0.551**
单株鲜皮重
FBW
2016 0.607** 0.027 0.798** 0.695** 0.059 0.480** 0.816**
2017 0.730** 0.202** 0.783** 0.700** 0.158** 0.424** 0.717**
2018 0.703** 0.241** 0.671** 0.660** 0.168** 0.384** 0.809**
单株干皮重
DBW
2016 0.522** 0.020 0.529** 0.535** 0.025 0.299** 0.609** 0.714**
2017 0.797** 0.195** 0.730** 0.615** 0.140* 0.458** 0.654** 0.883**
2018 0.666** 0.382** 0.422** 0.355** 0.399** 0.302** 0.702** 0.740**

Table 5

Correlation coefficients between partial SSR markers and 9 fiber yield traits in jute"

标记
Marker
株高
PH
分枝高
BH
节数
NMS
茎粗
SD
鲜皮厚
FBT
分枝数
NB
单株鲜茎重
FSW
单株鲜皮重
FBW
单株干皮重
DBW
CoSSR068 -0.120* -0.090 -0.160 -0.07 -0.04 -0.020 -0.110 -0.110 -0.100
CoSSR119 -0.010 -0.240** 0.130** 0.031 0.15* 0.130* 0.052 0.020 0.007
CoSSR100 0.051 -0.090 0.280 -0.022 -0.02 0.028 0.028 -0.004 -0.020
CoEMS250 -0.020 -0.020 0.030 -0.021 0.045 0.029 -0.010 -0.012 0.018
CoEMS474 -0.160** -0.090 -0.020 -0.045 -0.04 -0.020 -0.010 -0.120** -0.130*
CoSSR099 0.131* -0.070 0.130* -0.072 -0.04 0.133* 0.111 0.0370 0.110
CoSSR094 0.147** -0.170** 0.200** 0.195** 0.22** 0.200** 0.174** 0.213** 0.065
CoSSR090 -0.140 -0.150* 0.023 -0.170** -0.11 0.023 -0.090 -0.130* -0.104
CcID066 0.127* -0.160** 0.170* -0.120* -0.04 0.130* 0.076 -0.023 0.049
CcID167 0.176** -0.100 0.180** 0.190** 0.30** 0.180** 0.168** 0.294** 0.230**
CoSSR133 0.147* -0.070 0.140* 0.099 0.13* 0.140* 0.088 0.090 0.014
CoSSR086 0.208** -0.120* 0.210** 0.255** 0.33** 0.210** 0.226** 0.324** 0.190**
CoSSR164 0.081 0.092 0.095 -0.180** -0.10 -0.100 -0.050 -0.012 0.031
CcSSR019 0.215** -0.140* 0.241 0.245** 0.34** 0.240** 0.243** 0.327** 0.217**
CcSSR045 -0.110* -0.210* 0.063 -0.160** -0.15** -0.060 -0.100 -0.105 -0.080

Table 6

Stepwise multiple regression analysis between SSR markers and fiber yield traits"

性状
Trait
SSR标记
SSR marker
贡献率
Phenotypic variation explained, R2 (%)
标准回归系数
Standardized regression coefficients
株高PH CcID102 19.9 -0.316
分枝高BH CoSSR179 12.1 0.347
茎粗SD CoSSR015 13.1 0.361
鲜皮厚FBT Juph059 22.5 0.475
节数NMS CoSSR179 11.1 -0.333
分枝数NB CcID102 3.9 0.197
单株鲜茎重FSW CoSSR305 15.3 0.391
单株鲜皮重FBW CoSSR192 20.2 -0.449
单株干皮重DBW CoSSR192 7.1 -0.266
[1] Zhang L W, Ibrahim A K, Niyitanga S, Zhang L M, Qi J M . Jute (Corchorus spp.) Breeding. Advances in Plant Breeding Strategies: Industrial and Food Crops, 2019. pp 85-113.
[2] 粟建光, 戴志刚, 杨泽茂, 唐蜻, 谢冬微, 陈基权, 许英, 徐建堂, 张利国, 龚友才, 宋宪友, 程超华, 邓灿辉 . 麻类作物特色资源的创新与利用. 植物遗传资源学报, 2019,20:11-19.
Su J G, Dai Z G, Yang Z M, Tang Q, Xie D W, Chen J Q, Xu Y, Xu J T, Zhang L G, Gong Y C, Song X Y, Cheng C H, Deng C H . Innovation and utilization of characteristic germplasm for bast fiber crops. J Plant Genet Resour, 2019,20:11-19 (in Chinese with English abstract).
[3] Mondal S, Hadapad A B, Hande P A, Badigannavar A M . Identification of quantitative trait loci for bruchid ( Caryedon serratus Olivier) resistance components in cultivated groundnut(Arachis hypogaea L.). Mol Breed, 2014,33:961-973.
doi: 10.1007/s11032-013-0011-1
[4] Crouzillat D, Phillips W, Fritz P J, Pétiard V . Quantitative trait loci analysis in Theobroma cacao using molecular markers. Inheritance of polygenic resistance to Phytophthora palmivora in two related cacao populations. Euphytica, 2000,114:25-36.
doi: 10.1023/A:1003994212394
[5] Banerjee S, Das M, Mir R R, Kundu A, Topdar N, Sarkar D, Sinha M K, Balyan H S, Gupta P K . Assessment of genetic diversity and population structure in a selected germplasm collection of 292 jute genotypes by microsatellite (SSR) markers. Mol Plant Breed, 2012,3:11-25.
[6] Liu S, Liu H, Wu A, Hou Y, An Y, Wei C . Construction of fingerprinting for tea plant ( Camellia sinensis) accessions using new genomic SSR markers. Mol Breed, 2017,37:93.
doi: 10.1007/s11032-017-0692-y
[7] Dachapak S, Somta P, Poonchaivilaisak S, Yimram T, Srinives P . Genetic diversity and structure of the zombi pea [Vigna vexillata(L.) A. Rich] gene pool based on SSR marker analysis. Genetica, 2017,145:189-200.
doi: 10.1007/s10709-017-9957-y pmid: 28233217
[8] Satya P, Chakraborty A, Jana S, Majumdar S, Karan M, Sarkar D, Datta S, Mitra J, Kar C, Karmakar P, Singh N . Identification of genic SSRs in jute ( Corchorus capsularis, Malvaceae) and development of markers for phenylpropanoid biosynthesis genes and regulatory genes. Plant Breed, 2017,136:784-797.
doi: 10.1111/pbr.2017.136.issue-5
[9] Tao A, Huang L, Wu G, Afshar R K, Qi J, Xu J, Fang P, Lin L, Zhang L, Lin P . High-density genetic map construction and QTLs identification for plant height in white jute ( Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. BMC Genomics, 2017,18:355.
doi: 10.1186/s12864-017-3712-8 pmid: 28482802
[10] Lou Y, Hu L, Chen L, Sun X, Yang Y, Liu H, Xu Q . Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue ( Festuca arundinacea Schreb.). PLoS One, 2015,10:e0133054.
doi: 10.1371/journal.pone.0133054 pmid: 26186338
[11] Prabhu D A, Ray J D, Singh S K, Valerio H V, Smith J R, Purcell L C, King A, Fritschi F B . Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome, 2015,8:1-15.
[12] Islam M S, Saito J A, Emdad E M, Ahmed B, Islam M M, Halim A, Hossen Q M, Hossain M Z, Ahmed R, Hossain M S, Kabir S M, Khan M S, Khan M M, Hasan R, Aktar N, Honi U, Islam R, Rashid M M, Wan X, Hou S, Haque T, Azam M S, Moosa M M, Elias S M, Hasan A M, Mahmood N, Shafiuddin M, Shahid S, Shommu N S, Jahan S, Roy S, Chowdhury A, Akhand A I, Nisho G M, Uddin K S, Rabeya T, Hoque S M, Snigdha A R, Mortoza S, Matin S A, Islam M K, Lashkar M Z, Zaman M, Yuryev A, Uddin M K, Rahman M S, Haque M S, Alam M M, Khan H, Alam M . Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants, 2017,3:16223.
doi: 10.1038/nplants.2016.223 pmid: 28134914
[13] 姚嘉瑜, 张立武, 赵捷, 徐益, 祁建民, 张列梅 . 黄麻全基因组SSR鉴定与特征分析. 作物学报, 2019,45:14-21.
Yao J Y, Zhang L W, Zhao J, Xu Y, Qi J M, Zhang L M . Evaluation and characteristic analysis of SSRs from the whole genome of jute ( Corchorus capsularis). Acta Agron Sin, 2019,45:14-21 (in Chinese with English abstract).
[14] 张彬, 李金秀, 王震, 冯浩, 李金榜 . 小麦主要农艺性状的相关性及聚类分析. 作物杂志, 2018, ( 3):57-60.
Zhang B, Li J X, Wang Z, Feng H, Li J B . Correlation and cluster analysis of agronomic traits in wheat lines. Crops, 2018, ( 3):57-60 (in Chinese with English abstract).
[15] 殷冬梅, 李拴柱, 崔党群 . 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010,32:212-216.
Yin D M, Li S Z, Cui D Q . Agronomic character and cluster analysis of peanut cultivar. Chin J Oil Crop Sci, 2010,32:212-216 (in Chinese with English abstract).
[16] Ghosh R K, Sreewongchai T, Nakasathien S, Phumichai C . Phenotypic variation and the relationships among jute ( Corchorus species) genotypes using morpho-agronomic traits and multivariate analysis. Aust J Crop Sci, 2013,7:830.
[17] Zhang L W, Yuan M H, Tao A F, Xu J T, Lin L H, Fang P P, Qi J M . Genetic structure and relationship analysis of an association population in jute ( Corchorus spp.) evaluated by SSR markers. PLoS One, 2015,10:e0128195.
doi: 10.1371/journal.pone.0128195 pmid: 26035301
[18] 张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民 . GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. 作物学报, 2014,40:1213-1219.
doi: 10.3724/SP.J.1006.2014.01213
Zhang L W, Yuan M H, He X W, Liu X, Fang P P, Lin L H, Tao A F, Xu J T, Qi J M . Development and universality evaluation of EST-SSR markers from GenBank in jute. Acta Agron Sin, 2014,40:1213-1219 (in Chinese with English abstract).
[19] Zhang L L, Gao Z Z, Wan X B, Xu Y, Zhang L M, Tao A F, Fang P P, Qi J M, Zhang L W . Development of novel small indel markers in jute ( Corchorus spp.). Trop Plant Biol, 2017,10:169-176.
doi: 10.1007/s12042-017-9193-8
[20] 粟建光 . 黄麻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 7-27.
Su J G. Descriptors and Data Standard for Jute (Corchorus olitorius L. & Corchorus capsularis L.). Beijing: China Agriculture Press, 2005. pp 7-27(in Chinese).
[21] Kraakman A T, Wageningen A J, Niks R E, Stam P . Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004,168:435-446.
doi: 10.1534/genetics.104.026831 pmid: 15454555
[22] 杨洛淼, 孙健, 赵宏伟, 王敬国, 刘化龙, 邹德堂 . 不同年份冷水胁迫下水稻抽穗期和产量性状的QTL分析. 中国农业科学, 2016,49:3489-3503.
doi: 10.3864/j.issn.0578-1752.2016.18.003
Yang L M, Sun J, Zhao H W, Wang J G, Liu H L, Zou D T . QTL analysis of heading date and yield traits in japonica rice under cold water stress in different years. Sci Agric Sin, 2016,49:3489-3503 (in Chinese with English abstract).
[23] Karrakman A T, Nikes R E, Berg P M, Stam P, Eeuwijk F A . Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004,168:435-446.
doi: 10.1534/genetics.104.026831 pmid: 15454555
[24] 司二静, 张宇, 汪军成, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015,41:1064-1072.
doi: 10.3724/SP.J.1006.2015.01064
Si R J, Zhang Y, Wang J C, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J . Association analysis between SSR markers and agronomic traits in barley. Acta Agron Sin, 2015,41:1064-1072 (in Chinese with English abstract).
[25] Zhao J L, Wang H W, Zhang X C, Du X Y, Li A F, Kong L R . Association analysis of grain traits with SSR markers between Aegilops tauschii and hexaploid wheat(Triticum aestivum L.). J Integr Agric, 2015,14:1936-1948.
doi: 10.1016/S2095-3119(15)61070-X
[26] Abbasi Z, Majidi M M, Arzani A, Rajabi A, Mashayekhi P, Bocianowski J . Association of SSR markers and morpho- physiological traits associated with salinity tolerance in sugar beet ( Beta vulgaris L.). Euphytica, 2015,205:785-797.
doi: 10.1007/s10681-015-1408-1
[27] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[28] Yue B, Xue W Y, Luo L J, Xing Y Z . QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin, 2006,33:824-832.
doi: 10.1016/S0379-4172(06)60116-9 pmid: 16980129
[29] 祁建民, 卢浩然, 郑云雨, 王英娇 . 黄麻数量性状遗传关系分析. 作物学报, 1991,17:145-150.
Qi J M, Lu H R, Zheng Y Y, Wang Y J . Analysis on the genetic relationship of quantitative characters in jute ( Corchorus capsularis L.). Acta Agron Sin, 1991,17:145-150 (in Chinese with English abstract).
[30] 周金超, 杨鑫雷, 崔顺立, 侯名语, 陈焕英, 穆国俊, 刘立峰 . 花生SSR标记与农艺性状的相关性. 作物学报, 2014,40:1197-1204.
doi: 10.3724/SP.J.1006.2014.01197
Zhou J C, Yang X L, Cui S L, Hou M Y, Chen H Y, Mu G J, Liu L F . Correlation between SSR markers and agronomic traits in peanut ( Arachis hypogaea L.). Acta Agron Sin, 2014,40:1197-1204 (in Chinese with English abstract).
[31] 李丹阳, 刘凯歌, 卢济明, 杨鑫雷, 崔顺立, 穆国俊, 陈焕英, 刘立峰 . 花生SSR标记与品质性状的相关分析. 分子植物育种, 2017,15:2695-2701.
Li D Y, Liu K G, Lu J M, Yang X L, Cui S L, Mu G J, Chen H Y, Liu L F . Correlation analysis of SSR markers and quality traits in peanut ( Arachis hypogaea L.). Mol Plant Breed, 2017,15:2695-2701 (in Chinese with English abstract).
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[4] GUO Yan-Chun, YAO Jia-Yu, ZHANG Rong-Bin, CHEN Si-Yuan, HE Qing-Yao, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Identification and phylogenetic analysis of the pathogen of jute anthracnose in China [J]. Acta Agronomica Sinica, 2022, 48(3): 770-777.
[5] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[6] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[7] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[8] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[9] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
[12] HASAN Umut,SAWUT Mamat,Shui-Sen CHEN,Dan LI. Inversion of leaf area index of winter wheat based on GF-1/2 image [J]. Acta Agronomica Sinica, 2020, 46(5): 787-797.
[13] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[14] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[15] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!