Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1914-1922.doi: 10.3724/SP.J.1006.2020.04006

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf

Hui LI1,2(), De-Fang LI2,*(), Yong DENG2, Gen PAN2, An-Guo CHEN2, Li-Ning ZHAO2, Hui-Juan TANG2   

  1. 1College of Life and Environment Science, Hunan University of Arts and Science, Changde 415000, Hunan, China
    2Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China
  • Received:2020-01-10 Accepted:2020-08-19 Online:2020-09-08 Published:2020-11-25
  • Contact: De-Fang LI E-mail:guangjunmuzi@126.com;18973612200@163.com
  • Supported by:
    China Agriculture Research System(CARS-19-E07);Agricultural Science and Technology Innovation Program at the Chinese Academy of Agricultural Science(ASTIP-IBFC03);Hunan Education Department Project(18C0737);Doctoral Research Start-up Project of Hunan University of Arts and Sciences(17BSQD13)

Abstract:

Trehalose biosynthesis key enzyme gene TPP plays an important role in plant response to various abiotic stresses. In this study, in order to clarify the role of TPP gene in response to abiotic stress in kenaf, a specific primer was designed according to the sequence of CL541.contig2unigene, and the full-length cDNA sequence of TPP gene was obtained by PCR. Bioinformatics analysis showed that TPP had an open reading frame (ORF) length of 1128 bp, and encoded a protein containing 375 amino acids. The results of amino acid sequence consistency indicated that the agreement between the amino acid sequence of protein and that of TPPJ from other species was 71.18%, so the gene named as HcTPPJ. HcTPPJ was expressed in roots, stems and leaves. Under salt or drought stress, HcTPPJ was up-regulated significantly with the extension of stress treatment, indicating that the gene was involved in the response process of salt or drought stress in kenaf. Under the same conditions, HcNCED3 and HcAOC was significantly up-regulated, while the change of HcTPPJ expression was not obvious under ABA stress; HcTPPJ was significantly down-regulated, under the stress of MeJA for six hours. Therefore it was speculated that the HcTPPJ gene expression may be not regulated by the signal molecule of ABA, but negatively regulated by methyl jasmonate signal molecule. This study will lay a solid foundation for further elucidating the role of the gene in response to salt and drought stress in kenaf.

Key words: kenaf, salt stress, trehalose-6-phosphate phosphatase, ABA

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
引物用途
Primer usage
HcTPPJ-F ATGGTGAGTTTCTTTGAA 基因克隆
HcTPPJ-R TTACATTTTAGATTGCCCT Gene cloning
HcTPPJ-QF AACCTTTCTGCCTTGAGT 实时荧光定量PCR
HcTPPJ-QR AAATTGGCTGAGCTGTAC qRT-PCR
HcNCED3-QR AGGCGGTCGTCGGACTCGTT 实时荧光定量PCR
HcNCED3-QF GACTGCTTCTGCTTCCACCTCTG qRT-PCR
Actin-QF CAGGCAGTTCTTTCTTTGT 内参基因
Actin- QR ATCCTCCAATCCAGACACT Reference gene

Fig. 1

Agarose gel electrophoresis of cDNA full length of HcTPPJ M: DNA marker 2K Plus II; 1: PCR product."

Fig. 2

Amino acid sequence alignment of HcTPPJ and TPPJ proteins from other plants OsTPP1: Oryza sativa; AtTPPA, AtTPPB, AtTPPD: Arabidopsis thaliana; TPPJ: Theobroma cacao, Hibiscus syriacus, Durio zibethinus, Gossypium raimondii, Populus trichocarpa, Hibiscus cannabinus, Hevea brasiliensis, Punica granatum. The different colors indicate that conservatism of different amino acid residues. The blue means amino acids are complete conservation, the pink, cyan, yellow mean that the conservation of amino acids is no less than 75%, no less than 50%, no less than 33%, respectively, and white mean no more than 33%."

Fig. 3

Phylogenetic tree of HcTPPJ and TPPJ from other plants TPPJ: Theobroma cacao, Hibiscus syriacus, Durio zibethinus, Gossypium raimondii, Populus trichocarpa, Hibiscus cannabinus, Hevea brasiliensis, Punica granatum; AtTPPA, AtTPPB, AtTPPD: Arabidopsis thaliana; OsTPP1: Oryza sativa."

Fig. 4

Expression of HcTPPJ gene in different organs * indicates significantly different at the 0.05 probability level. Error bars represent the standard error of each treating group (n = 3)."

Fig. 5

Expression of HcTPPJ in different organs after three days under 150 mmol L-1 NaCl stress * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively. Error bars represent the standard error of each treating group (n = 3)."

Fig. 6

Expression of HcTPPJ in leaves under different NaCl concentration stress * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively. Error bars represent the standard error of each treating group (n = 3)."

Fig. 7

Expression of HcTPPJ in leaves under 150 mmol L-1 NaCl stress at different times ** indicate significantly different at the 0.01 probability level. Error bars represent the standard error of each treating group (n = 3)."

Fig. 8

Expression of HcTPPJ in different organs under drought stress 8 h (A) and expression of HcTPPJ in leaves under drought stress at different times (B) * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively. Error bars represent the standard error of each treating group (n = 3)."

Fig. 9

Expression of HcNCED3 at different times under salt (A) or drought (B) stress * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively. Error bars represent the standard error of each treating group (n = 3)."

Fig. 10

Expression of HcTPPJ at different times under ABA stress Error bars represent the standard error of each treating group (n = 3)."

[1] Elbein A D, Pan Y T, Irena P, Carroll D . New insights on trehalose: a multifunctional molecule. Glycobiology, 2003,13:17R-27R.
doi: 10.1093/glycob/cwg047 pmid: 12626396
[2] Paul M J, Gonzalez-Uriarte A, Griffiths C A, Hassani-Pak K . The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiol, 2018,177:12-23.
doi: 10.1104/pp.17.01634 pmid: 29592862
[3] 陈素丽, 彭瑜, 周华, 于波, 董彦君, 滕胜 . 植物海藻糖代谢及海藻糖-6-磷酸信号研究进展. 植物生理学报, 2014,50:233-242.
Chen S L, Peng Y, Zhou H, Yu B, Dong Y J, Teng S . Research advances in trehalose metabolism and trehalose-6-phosphate signaling in plants. Plant Physiol J, 2014,50:233-242 (in Chinese with English abstract).
[4] 刘姣, 姜大刚 . 作物海藻糖合成相关基因的研究进展. 基因组学与应用生物学, 2014,33:432-437.
Liu J, Jiang D G . Research advance on trehalose synthesis related genes in crops. Genomics Appl Biol, 2014,33:432-437 (in Chinese with English abstract).
[5] 谢冬微, 王晓楠, 付连双, 孙健, 李卓夫, 郑伟 . 外源海藻糖对冬小麦低温下胚芽长及幼苗抗寒性的影响. 麦类作物学报, 2015,35:215-223.
Xie D W, Wang X N, Fu L S, Sun J, Li Z F, Zheng W . Effect of exogenous trehalose on germ length and seedling freeze resistance of winter wheat under cold stress. J Triticeae Crops, 2015,35:215-223 (in Chinese with English abstract).
[6] 刘旋, 田礼欣, 佟昊阳, 左师宇, 李晶 . 低温胁迫下玉米幼苗根系受外源海藻糖调控的生理表现. 生态学杂志, 2018,37:2354-2361.
Liu X, Tian L X, Tong H Y, Zuo S Y, Li J . Physiological manifestations of maize seedling roots regulated by exogenous trehalose under low temperature stress. Chin J Ecol, 2018,37:2354-2361 (in Chinese with English abstract).
[7] 田礼欣, 曲丹阳, 毕文双, 谢腾龙, 李晶 . 海藻糖对盐胁迫下玉米幼苗生长及生理特性的影响. 草业学报, 2017,26(8):131-138.
Tian L X, Qu D Y, Bi W S, Xie T L, Li J . Trehalose alleviates the negative effects of salinity on the growth and physiological characteristics of maize seedlings. Acta Pratacult Sin, 2017,26(8):131-138 (in Chinese with English abstract).
[8] 巩涛, 刘德海, 王继雯, 杨文玲, 解复红 . 海藻糖合成途径及分子生物学研究进展. 中国农学通报, 2016,32(14):62-67.
Gong T, Liu D H, Wang J W, Yang W L, Xie F H . Advances in trehalose biosynthesis pathways and application of molecular biology technique. Chin Agric Sci Bull, 2016,32(14):62-67 (in Chinese with English abstract).
[9] Vandesteene L, Dijck P V . Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol, 2012,160:884.
doi: 10.1104/pp.112.201400 pmid: 22855938
[10] Vogel G, Aeschbacher R A, Müller J, Boller T, Wiemken A . Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J, 1998,13:673-683.
doi: 10.1046/j.1365-313x.1998.00064.x pmid: 9681009
[11] Krasensky J, Broyart C, Rabanal F A, Jonak C . The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antiox Redox Signal, 2011,21:1289-1304.
doi: 10.1089/ars.2013.5693
[12] Pramanik M H R, Imai R . Functional identification of a trehalose-6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol, 2005,58:751-762.
doi: 10.1007/s11103-005-7404-4
[13] Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X . Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008,228:191-201.
doi: 10.1007/s00425-008-0729-x
[14] Satoshi I, Masatomo K, Teruaki T, Masaaki N, Motoaki S, Tomohiko K, Satoshi T, Yoshitaka K, Kazuko Yamaguchi S, Kazuo S . Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenodi dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001,27:325-333.
doi: 10.1046/j.1365-313x.2001.01096.x pmid: 11532178
[15] 魏开发, 贾文锁, 林子英, 蔡月琴 . NCED3基因雌二醇诱导表达对ABA合成酶基因和代谢酶基因表达的影响. 湖北民族学院学报(自然科学版), 2009,27(1):70-75.
Wei K F, Jia W S, Lin Z Y, Cai Y Q . Effect of NCED3 gene estradiol-induced expression on ABA biosynthetic genes and metabolic enzyme gene expression. J Hubei Univ Nat (Nat Sci Edn), 2009,27(1):70-75 (in Chinese with English abstract).
[16] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shii C T, Cheng W H . Ectopic expression of rice OSNCED3 in Arabidopsis increase ABA level and alters leaf morphology. Plant Sci, 2010,178:12-22.
doi: 10.1016/j.plantsci.2009.09.014
[17] 李辉, 李德芳, 陈安国, 唐慧娟, 李建军, 黄思齐 . 红麻液泡膜质子泵H+-PPase (Hcvp1)基因的克隆、序列分析和表达. 华北农学报, 2017,32(1):9-14.
Li H, Li D F, Chen A G, Tang H J, Li J J, Huang S Q . Cloning and analysis of sequence and expression of a vaculoar H+-PPase gene in Kenaf . Acta Agric Boreali-Sin, 2017,32(1):9-14 (in Chinese with English abstract).
[18] 李辉, 李德芳, 陈安国, 唐慧娟, 李建军, 黄思齐 . 盐和干旱胁迫下红麻HcWD40-1基因的克隆及表达分析. 农业生物技术学报, 2017,25:1970-1978.
Li H, Li D F, Chen A G, Tang H J, Li J J, Huang S Q . Cloning and expression characteristics of HcWD40-1 gene under salt and drought stress in kenaf (Hibiscus cannabinus). J Agric Biotechnol, 2017,25:1970-1978 (in Chinese with English abstract).
[19] Li H, Li D F, Chen A G, Tang H J, Li J J, Huang S Q . RNA-seq for comparative transcript profiling of kenaf under salinity stress. J Plant Res, 2017,130:365-372.
doi: 10.1007/s10265-016-0898-9 pmid: 27999968
[20] 李昉峻, 周其文, 漆新华, 宋正国 . 海藻糖对镉胁迫下水稻幼苗生长的影响. 农业环境科学学报, 2019,38:1827-1834.
Li F J, Zhou Q W, Qi X H, Song Z G . Effects of trehalose on the growth of rice seedlings under cadmium stress. J Agron-Environ Sci, 2019,38:1827-1834 (in Chinese with English abstract).
[21] 庞椿朋, 叶亮, 马健, 路涛, 杨宗艺, 齐明芳 . 海藻糖对高温下番茄幼苗叶片光合作用的调控作用. 江苏农业科学, 2017,45(21):143-146.
Pang C P, Ye L, Ma J, Lu T, Yang Z Y, Qi M F . Regulation of trehalose on photosynthesis of tomato seedling leaves under high temperature. Jiangsu Agric Sci, 2017,45(21):143-146 (in Chinese with English abstract).
[22] 杨雪, 崔喜艳, 李艳丽, 杨美英 . 水稻OsTPP3基因的克隆及生物信息学分析. 分子植物育种, 2018,16:3785-3793.
Yang X, Cui X Y, Li Y L, Yang M Y . Cloning and bioinformatics analysis of OsTPP3 gene in Oryza sativa. Mol Plant Breed, 2018,16:3785-3793 (in Chinese with English abstract).
[23] 丁泽红, 吴春来, 颜彦, 付莉莉, 胡伟 . 木薯海藻糖-6-磷酸酯酶MeTPP6基因克隆及其表达分析, 江苏农业科学, 2019,47(6):31-35.
Ding Z H, Wu C L, Yan Y, Fu L L, Hu W . Cloning and expression analysis of trehalose-6-phosphatase MeTPP6 gene from cassava. Jiangsu Agric Sci, 2019,47(6):31-35 (in Chinese with English abstract).
[24] 刘辉, 王涛涛, 张俊红, 欧阳波, 李汉霞 . 番茄低温响应转录因子SlNAC41克隆及表达分析. 植物生理学报, 2014,50:1707-1716.
Liu H, Wang T T, Zhang J H, Ou-Yang B, Li H X . Cloning and expression analysis of a cold-responsive transcription factor SlNAC41 in tomato. Plant Physiol J, 2014,50:1707-1716 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[3] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[4] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[5] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[6] LI Zeng-Qiang, DING Xin-Chao, LU Hai, HU Ya-Li, YUE Jiao, HUANG Zhen, MO Liang-Yu, CHEN Li, CHEN Tao, CHEN Peng. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1031-1042.
[7] ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053.
[8] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[9] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[10] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[11] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[12] LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816.
[13] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[14] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[15] TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!