Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1877-1884.doi: 10.3724/SP.J.1006.2024.31072

• RESEARCH NOTES • Previous Articles    

Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat

CHEN Juan(), YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang*()   

  1. College of Agronomy, Anhui Science and Technology University, Fengyang 233100, Anhui, China
  • Received:2023-11-26 Accepted:2024-04-02 Online:2024-07-12 Published:2024-04-16
  • Contact: *E-mail: liwy@ahstu.edu.cn
  • Supported by:
    Collaborative Innovation Project of Universities in Anhui province(GXXT-2021-089);Special Funds for the Construction of Agricultural Research System in Anhui Province (Wheat);Anhui Natural Science Foundation Project(1408085MC48);Sci-tech Commissioner Project in Anhui Province(2023tpt035)

Abstract:

The objective of this study is to clarify the effect of waterlogging at jointing stage on starch particle size distribution and pasting properties in soft wheat. Under field conditions, from 2021 to 2023, the soft wheat varieties Huachengmai 1688 and Quanmai 725 were selected as the test materials, and two treatments of control (CK) and waterlogging (WL) were conducted. The waterlogging treatment was carried out for 10 consecutive days at jointing stage of wheat to study the effect of waterlogging at jointing stage on the starch particle size distribution and viscosity parameters of soft wheat and their relationship. The results showed that, compared with the control, waterlogging stress at jointing stage reduced wheat yield by reducing spike number, grain number per spike, and 1000-grain weight. The wet gluten content and protein content of grains were significantly reduced, and the starch content was significantly increased. Waterlogging stress at jointing stage inhibited the production and growth of B-type starch in wheat endosperm, and significantly reduced the volume, surface area, and the number percentage of B-type starch granules, mainly affecting 2.8-10.0 μm starch granules. The volume and surface area percentage of A-type starch granules increased significantly, mainly affecting 10.0-22.0 μm starch granules. Waterlogging stress had no significant effect on the percentage of A-type starch granules. After waterlogging stress, the peak viscosity, trough viscosity, final viscosity, breakdown, and setback of wheat increased significantly. In conclusion, waterlogging stress at jointing stage changed the starch particle size distribution of wheat. By reducing the proportion of B-type starch granules, increasing the proportion of A-type starch granules and the viscosity parameters such as peak viscosity were increased, and finally the yield and quality of wheat were affected.

Key words: wheat, starch granules, granule size distribution of starch, pasting properties, waterlogging

Fig. 1

Temperature and precipitation during wheat growth season in 2021-2023"

Table 1

Effects of waterlogging on yield and its components in wheat"

年份
Year
处理
Treatment
品种
Cultivar
穗数
Spike (×104 hm-2)
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2021-2022 CK 华成麦1688 HC1688 370.67±14.05 48.80±2.29 47.19±3.08 5994.62±179.24
荃麦725 QM725 548.00±6.93 49.53±0.25 41.74±0.81 8375.29±346.09
WL 华成麦1688 HC1688 329.33±14.05 41.77±1.35 39.38±0.80 4966.44±63.66
荃麦725 QM725 521.33±33.31 40.75±3.55 37.50±0.65 7584.62±587.13
2022-2023 CK 华成麦1688 HC1688 568.00±12.00 47.53±1.86 46.85±0.85 8730.40±135.33
荃麦725 QM725 662.00±42.00 51.70±1.10 47.15±0.45 8850.07±148.87
WL 华成麦1688 HC1688 480.00±12.00 41.57±1.95 39.65±1.35 7157.44±138.28
荃麦725 QM725 590.00±46.00 42.90±0.90 40.77±1.72 6656.53±313.47
F 年份Y 142.01** 2.15 13.37** 84.85**
F-value 渍水W 26.22** 125.09** 118.96** 132.28**
品种C 165.77** 5.27* 6.31* 90.41**
Y×W 4.27 0.70 0.42 16.08**
Y×C 13.78** 2.43 13.82** 122.73**
W×C 0.47 1.30 3.49 0.62
Y×W×C 0.34 0.72 1.38 3.12**

Table 2

Effects of waterlogging on wheat grain quality traits"

年份
Year
处理
Treatment
品种
Cultivar
湿面筋含量
Wet gluten (%)
蛋白质含量
Protein content (%)
淀粉含量
Starch content (%)
2021-2022 CK 华成麦1688 HC1688 29.50±1.47 14.33±0.78 68.03±0.78
荃麦725 QM725 28.40±0.20 13.55±0.05 69.40±0.05
WL 华成麦1688 HC1688 25.70±1.70 12.47±0.30 68.57±0.30
荃麦725 QM725 27.53±1.21 12.45±0.35 69.47±0.35
2022-2023 CK 华成麦1688 HC1688 41.47±0.40 18.45±1.04 65.80±0.20
荃麦725 QM725 41.67±0.57 18.38±0.21 66.50±0.17
WL 华成麦1688 HC1688 39.43±0.23 17.08±0.49 66.73±0.50
荃麦725 QM725 40.07±1.00 16.95±1.24 66.87±0.35
F 年份Y 936.40** 204.43** 216.68**
F-value 渍水W 24.32** 16.57** 8.55*
品种C 0.87 0.01 22.75**
Y×W 0.38 0.74 1.16
Y×C 0.01 1.48 4.86*
W×C 4.00 0.02 2.53
Y×W×C 2.21 1.99 0.02

Table 3

Effect of waterlogging on volume distribution of starch granules in wheat endosperm (%)"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0 10.0-22.0 >22.0
2021-2022 CK HC1688 11.69±0.01 29.67±1.10 41.16±0.72 58.84±0.72 30.50±0.44 28.70±0.70
QM725 11.59±0.01 27.50±0.99 39.09±1.28 60.91±1.28 32.65±0.34 29.40±0.99
WL HC1688 11.62±0.02 27.39±2.45 40.34±0.74 59.66±0.74 31.76±0.49 28.21±0.75
QM725 11.52±0.01 24.80±1.67 36.33±1.80 63.67±1.80 34.31±1.34 29.77±0.49
2022-2023 CK HC1688 11.33±0.01 27.32±0.05 38.66±0.07 61.34±0.07 32.36±0.06 29.04±0.09
QM725 9.64±0.01 23.40±0.54 32.70±0.07 67.30±0.07 35.05±0.03 32.30±0.09
WL HC1688 9.38±0.01 24.27±0.05 33.65±0.08 66.35±0.08 36.19±0.16 29.94±0.19
QM725 9.33±0.01 20.91±0.86 30.24±1.33 67.76±1.45 36.76±0.30 32.99±1.55
F 年份Y 153.65** 159.72** 254.21** 248.31** 138.78** 113.15**
F-value 渍水W 19.56** 53.61** 66.16** 64.64** 80.10** 6.83*
品种C 12.61** 130.91** 129.2** 126.11** 70.92** 57.09**
Y×W 15.36** 2.23 8.21* 7.97* 7.66* 1.63
Y×C 8.13* 2.13 5.80* 5.65* 2.31 22.69**
W×C 9.22** 0.78 0.20 0.20 3.30 1.26
Y×W×C 9.14** 5.79* 10.90** 10.66** 7.16* 3.92

Table 4

Effect of waterlogging on surface area distribution of starch granules in wheat endosperm (%)"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0 10.0-22.0 >22.0
2021-2022 CK HC1688 51.53±1.19 31.86±0.44 83.39±1.26 16.61±0.91 10.99±0.82 5.66±5.84
QM725 52.99±1.01 29.23±0.69 82.22±0.71 17.78±0.71 11.91±0.53 6.15±5.93
WL HC1688 51.28±0.95 28.36±2.75 79.64±3.06 20.36±1.60 14.80±1.74 5.52±5.83
QM725 52.68±0.45 27.18±1.67 79.86±1.66 20.14±1.46 14.26±1.54 5.78±5.94
2022-2023 CK HC1688 52.15±0.12 29.97±0.06 82.12±0.06 17.88±0.06 12.04±0.05 5.84±5.87
QM725 51.56±0.97 27.58±0.04 79.15±1.01 20.85±0.96 14.60±0.02 5.27±6.27
WL HC1688 48.78±0.19 28.03±1.67 76.81±1.83 23.19±1.64 16.23±1.75 6.84±7.04
QM725 50.78±0.07 23.86±0.64 74.64±0.64 25.36±1.42 18.40±1.48 6.94±6.91
F 年份Y 16.49** 11.58** 24.13** 36.08** 21.45** 22.68**
F-value 渍水W 13.55** 28.18** 39.87** 59.62** 49.66** 7.50**
品种C 11.01** 23.99** 5.84* 8.73* 6.48* 2.30
Y×W 7.88* 0.06 2.15 3.22 0.83 8.36*
Y×C 1.26 1.69 2.75 4.11 4.69* 0.07
W×C 3.88 0.02 0.76 1.13 0.84 0.29
Y×W×C 4.26 2.34 0.05 0.08 0.28 0.54

Table 5

Effect of waterlogging on number distribution of starch granules in wheat endosperm (%)"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0
2021-2022 CK HC1688 97.37±0.04 2.52±0.04 99.90±0.01 0.10±0.01
QM725 97.62±0.06 2.28±0.06 99.90±0.01 0.10±0.01
WL HC1688 97.29±0.07 2.60±0.07 99.89±0.00 0.11±0.00
QM725 97.53±0.10 2.36±0.10 99.89±0.01 0.11±0.01
2022-2023 CK HC1688 97.59±0.01 2.29±0.03 99.88±0.03 0.13±0.01
QM725 97.82±0.02 2.05±0.02 99.87±0.00 0.13±0.00
WL HC1688 97.58±0.06 2.28±0.05 99.86±0.01 0.13±0.01
QM725 97.78±0.09 2.09±0.06 99.87±0.12 0.13±0.01
F 年份Y 96.88** 134.03** 1.70 87.11**
F-value 渍水W 5.09* 4.83* 0.08 1.78
品种C 88.98** 100.77** 0.01 0.44
Y×W 1.87 2.15 0.00 0.44
Y×C 0.38 0.43 0.00 0.00
W×C 0.17 0.43 0.08 1.78
Y×W×C 0.12 0.26 0.03 0.44

Table 6

Effect of waterlogging on pasting properties (cP)"

年份
Year
处理
Treatment
品种
Cultivar
峰值黏度
Peak viscosity
低谷黏度
Trough viscosity
最终黏度
Final viscosity
稀懈值
Breakdown
回升值
Setback
2021-2022 CK HC1688 1089.67±25.74 929.83±24.61 1956.00±31.22 142.25±7.25 1006.25±31.75
QM725 1567.50±18.50 1043.83±35.97 2044.67±92.38 495.00±22.00 1057.50±35.50
WL HC1688 1166.00±19.00 985.17±36.38 2041.67±72.06 180.83±19.33 1056.50±46.77
QM725 1614.50±7.50 1103.33±57.95 2107.00±118.42 548.25±8.75 1084.00±91.00
2022-2023 CK HC1688 819.00±14.00 685.50±6.50 1292.50±5.50 133.50±20.50 607.00±12.00
QM725 1241.33±48.34 848.00±37.00 1475.67±77.31 380.00±29.00 627.67±55.59
WL HC1688 858.67±23.18 712.00±27.84 1327.67±33.98 200.00±70.49 626.00±23.00
QM725 1332.67±20.40 898.50±25.50 1611.33±40.82 443.00±12.00 723.25±20.25
F 年份Y 794.95** 244.62** 422.84** 17.07** 422.82**
F-value 渍水W 36.56** 10.68** 7.21* 19.00** 5.90*
品种C 1877.53** 98.01** 27.33** 567.40** 6.23*
Y×W 0.03 0.42 0.04 0.55 0.23
Y×C 0.51 3.96 6.94* 20.63** 0.25
W×C 0.28 0.23 0.42 0.05 0.45
Y×W×C 3.71 0.11 1.09 0.13 1.62
[1] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究. 作物学报, 2022, 48: 151-164.
doi: 10.3724/SP.J.1006.2022.11005
Ma B W, Li Q, Cai J, Zhou Q, Huang M, Dai T B, Wang X, Jiang D. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat. Acta Agron Sin, 2022, 48: 151-164 (in Chinese with English abstract).
[2] Wang X, Huang M, Zhou Q, Cai J, Dai T B. Physiological and proteomic mechanisms of waterlogging priming improve tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environ Exp Bot, 2016, 132: 175-182.
[3] Singh S P, Setter T L. Effect of waterlogging on element concentrations, growth and yield of wheat varieties under farmer’s sodic field conditions. Natl Acad Sci India Proc: Biol Sci, 2017, 87: 513-520.
[4] 王美玲, 蒋文月, 葛雨洋, 朱新开, 李春燕, 朱敏, 郭文善, 丁锦峰. 拔节期不同程度渍水对小麦根系生长和籽粒产量的影响. 华北农学报, 2023, 38(4): 83-90.
doi: 10.7668/hbnxb.20193847
Wang M L, Jiang W Y, Ge Y Y, Zhu X K, Li C Y, Zhu M, Guo W S, Ding J F. Effects of different degrees of waterlogging at stem-elongation stage on root growth and grain yield in wheat. Acta Agric Boreali-Sin, 2023, 38(4): 83-90 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193847
[5] 吴元奇, 李朝苏, 樊高琼, 吴晓丽, 汤永禄. 渍水对四川小麦生理性状及产量的影响. 应用生态学报, 2015, 26: 1162-1170.
Wu Y Q, Li Z S, Fan G Q, Wu X L, Tang Y L. Effect of waterlogging on physical traits and yield of wheat in Sichuan, China. Chin J App Ecol, 2015, 26: 1162-1170 (in Chinese with English abstract).
[6] 丁锦峰, 苏盛楠, 梁鹏, 江孟孟, 郑丽洁, 汪先鹏, 李春燕, 朱新开, 郭文善. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响. 麦类作物学报, 2017, 37: 1473-1479.
Ding J F, Su S N, Liang P, Jiang M M, Zheng L J, Wang X P, Li C Y, Zhu X K, Guo W S. Effects of waterlogging at jointing or after antheis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat. J Triticeae Crops, 2017, 37: 1473-1479 (in Chinese with English abstract).
[7] 向永玲, 方正武, 赵记伍, 高德荣, 张晓, 王晓玲. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响. 麦类作物学报, 2020, 40: 730-736.
Xiang Y L, Fang Z W, Zhao J W, Gao D R, Zhang X, Wang X L. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat. J Triticeae Crops, 2020, 40: 730-736 (in Chinese with English abstract).
[8] 张艳菲, 王晨阳, 马冬云, 卢红芳, 朱云集, 谢迎新, 郭天财. 花后渍水、高温及其复合胁迫对小麦籽粒蛋白质含量和面粉白度的影响. 作物学报, 2014, 40: 1102-1108.
doi: 10.3724/SP.J.1006.2014.01102
Zhang Y F, Wang C Y, Ma D Y, Lu H F, Zhu Y J, Xie Y X, Guo T C. Effects of waterlogging, high temperature and their interaction after anthesis on grain protein components and flour color in wheat. Acta Agron Sin, 2014, 40: 1102-1108 (in Chinese with English abstract).
[9] 刘丰, 蒋佳丽, 周琴, 蔡剑, 王笑, 黄梅, 仲迎鑫, 戴廷波, 曹卫星, 姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析. 中国农业科学, 2022, 55: 3723-3737.
Liu F, Jiang J L, Zhou Q, Cai J, Wang X, Huang M, Zhong Y X, Dai T B, Cao W X, Jiang D. The variation trend of grain quality of soft wheat in the United States and the analysis of the standard of weak gluten wheat in China. Sci Agric Sin, 2022, 55: 3723-3737 (in Chinese with English abstract).
[10] 付立冬, 贺江, 闫素辉, 许峰, 邵庆勤, 张从宇, 李文阳. 灌浆期淹水对小麦籽粒胚乳淀粉粒度分布的影响. 聊城大学学报(自然科学版), 2019, 32: 67-71.
Fu L D, He J, Yan S H, Xu F, Shao Q Q, Zhang C Y, Li W Y. Effects of water-logging on starch granule size distribution in wheat grain during grain filling. J Liaocheng Univ (Nat Sci), 2019, 32: 67-71 (in Chinese with English abstract).
[11] Liu P, Guo W, Jiang Z, Little C R. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci, 2011, 149: 159-169.
[12] 李文阳, 尹燕枰, 闫素辉, 戴忠民, 李勇, 梁太波, 耿庆辉, 王振林. 小麦花后弱光对籽粒淀粉积累和相关酶活性的影响. 作物学报, 2008, 34: 632-640.
doi: 10.3724/SP.J.1006.2008.00632
Li W Y, Yin Y P, Yan S H, Dai Z M, Li Y, Liang T B, Geng Q H, Wang Z L. Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain. Acta Agron Sin, 2008, 34: 632-640 (in Chinese with English abstract).
[13] 蔡瑞国, 张敏, 朱桓, 武宝悦, 李彦生, 王振林. 糯小麦籽粒淀粉粒度分布特征. 麦类作物学报, 2010, 30: 254-258.
Cai R G, Zhang M, Zhu H, Wu B Y, Li Y S, Wang Z L. Starch granule size distribution in grains of waxy wheat. J Triticeae Crops, 2010, 30: 254-258 (in Chinese with English abstract).
[14] 张敏, 赵城, 刘希伟, 宋霄君, 张玉春, 杨敏, 周齐齐, 蔡瑞国. 施氮量对糯小麦和非糯小麦籽粒淀粉组分与理化特性的影响. 麦类作物学报, 2017, 37: 786-793.
Zhang M, Zhao C, Liu X W, Song X J, Zhang Y C, Yang M, Zhou Q Q, Cai R G. Effect of nitrogen rate on starch composition and physicochemical properties of waxy and non-waxy wheat. J Triticeae Crops, 2017, 37: 786-793 (in Chinese with English abstract).
[15] 赵佳蓉, 马宏亮, 吴东明, 刘琼, 樊高琼. 遮阴时期对不同小麦品种淀粉组成结构及淀粉品质的影响. 核农学报, 2023, 37: 1056-1066.
doi: 10.11869/j.issn.1000-8551.2023.05.1056
Zhao J R, Ma H L, Wu D M, Liu Q, Fan G Q. Effects of Shading stage on the starch component and starch quality of different wheat cultivar. Acta Agric Nucl Sin, 2023, 37: 1056-1066 (in Chinese with English abstract).
[16] 袁建新, 李文阳, 李瑞, 谭植, 魏鹏, 袁雅妮, 闫素辉. 灌浆期遮阴对小麦胚乳淀粉粒度分布及糊化特性的影响. 麦类作物学报, 2020, 40: 220-226.
Yuan J X, Li W Y, Li R, Tan Z, Wei P, Yuan Y N, Yan S H. Effect of shading at grain filling stage on particle size distribution and pasting properties of wheat endosperm starch. J Triticeae Crops, 2020, 40: 220-226 (in Chinese with English abstract).
[17] Zhou Q, Huang M, Huang X, Liu J, Wang X, Cai J, Dai T B, Cao W X, Jiang D. Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiol Biochem, 2018, 35: 222-228.
[18] 谭植, 李瑞, 吴培金, 杨兵兵, 袁建新, 李文阳. 钾肥对弱筋小麦淀粉粒度分布与黏度参数的影响. 湖南农业大学学报(自然科学版), 2020, 46: 507-512.
Tan Z, Li R, Wu P J, Yang B B, Yuan J X, Li W Y. Effect of potassium on starch granules size distribution and viscosity parameters or weak gluten wheat. J Hunan Agric Univ (Nat Sci), 2020, 46: 507-512 (in Chinese with English abstract).
[19] Araki H, Hamada A, Hossain M A, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res, 2012, 137: 27-36.
[20] Arguello M N, Mason R E, Roberts T L, Subramanian N, AcuNA A, Addison C K, Lozada D N, MillerG R, Lazada D N, Miller R G, Gbur E. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield components. Field Crops Res, 2016, 194: 57-64.
[21] 王孟昌, 侯君佑, 盖盼盼, 耿兵婕, 黄正来, 张文静, 樊永惠, 马尚宇. 花后渍水对小麦根系抗氧化酶活性、旗叶光合特性及产量的影响. 安徽农业大学学报, 2023, 50: 8-11.
Wang M C, Hou J Y, Gai P P, Geng B J, Huang Z L, Zhang W J, Fan Y H, Ma S Y. Effects of post-anthesis waterlogging on root antioxidant enzyme activities, flag leaf photosynthetic characteristics and yield of wheat. J Anhui Agric Univ, 2023, 50: 8-11 (in Chinese with English abstract).
[22] 吴进东, 李金才, 陈云波, 陈存武, 朱旺生. 花后短暂高温渍水逆境对冬小麦籽粒品质的影响. 核农学报, 2015, 23: 2006-2012.
Wu J D, Li J C, Chen Y B, Chen C W, Zhu W S. Effects of transient high temperature and waterlogging after anthesis on grain quality of winter wheat. Acta Agric Nucl Sin, 2015, 23: 2006-2012 (in Chinese with English abstract).
[23] 姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇. 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 2004, 30: 175-82.
Jiang D, Xie Z J, Cao W X, Dai T B, Jing Q. Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin, 2004, 30: 175-182 (in Chinese with English abstract).
[24] Zhang W J, Wang B B, Zhang A M, Zhou Q R, Li Y, Li L Y, Ma S Y, Fan Y H, Huang Z L. Exogenous 6-benzylaminopurine enhances waterlogging and shading-tolerance after anthesis by improving grain starch accumulation and grain filling. Plant Sci, 2022, 27: 1-10.
[25] Li W Y, Yan S H, Yin Y P, Wang Z L. Starch granule size distribution in wheat grain in relation to shading after anthesis. J Agric Sci, 2010, 148: 183-189.
[26] 谭植, 闫素辉, 刘良柏, 王平信, 刘飞, 邵庆勤, 许峰, 张从宇, 李文阳. 拔节期低温对小麦穗花发育与籽粒淀粉粒分布的影响. 西北农业学报, 2021, 30: 637-644.
Tan Z, Yan S H, Liu L B, Wang P X, Liu F, Shao Q Q, Xu F, Zhang C Y, Li W Y. Effect of low temperature at jointing stage on spikelet and floret development and starch granule size distribution of wheat, Acta Agric Boreali-occident Sin, 2021, 30: 637-644 (in Chinese with English abstract).
[27] 戴忠民, 尹燕枰, 郑世英, 蔡瑞国, 顾锋, 闫素辉, 李文阳, 王振林. 不同供水条件对小麦强、弱势籽粒中淀粉粒度分布的影响. 生态学报, 2009, 29: 6534-6543.
Dai Z M, Yin Y P, Zheng S Y, Cai R G, Gu F, Yan S H, Li W Y, Wang Z L. Effect of water regime on starch granule size distribution in superior and inferior grains of wheat. Acta Ecol Sin, 2009, 29: 6534-6543 (in Chinese with English abstract).
[28] 张美微, 王晨阳, 贺德先, 马冬云. 环境和氮磷肥对强筋小麦品种郑麦9023淀粉糊化特性的影响. 麦类作物学报, 2010, 30: 905-909.
Zhang M W, Wang C Y, He D X, Ma D Y. Effects of location and different ratios of nitrogen and phosphorus fertilizers on starch pasting properties of strong-gluten wheat cultivar Zhengmai 9023. J Triticeae Crops, 2010, 30: 905-909 (in Chinese with English abstract).
[29] 王晨阳, 苗建利, 张美微, 马冬云, 冯伟, 谢迎新, 郭天财. 高温、干旱及其互作对两个筋力小麦品种淀粉糊化特性的影响. 生态学报, 2014, 34: 4882-4890.
Wang C Y, Miao J L, Zhang M W, Ma D Y, Feng W, Xie Y X, Guo T C. Effects of post-anthesis high temperature, drought stress and their interaction on the starch pasting properties of two wheat cultivars with different gluten strength. Acta Ecol Sin, 2014, 34: 4882-4890 (in Chinese with English abstract).
[30] 韩文芳, 熊善柏, 李江涛, 赵思明, 莫紫梅. 糯米淀粉的晶体性质和糊化特性. 中国粮油学报, 2015, 30(8): 48-53.
Han W F, Xiong S B, Li J T, Zhao S M, Mo Z M. Crystallinity and pasting properties of glutinous rice starches. J Chin Cereals Oils Assoc, 2015, 30(8): 48-53 (in Chinese with English abstract).
[1] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[2] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[3] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[4] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[5] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[6] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[7] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[8] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[9] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[10] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[11] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[12] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[13] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[14] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[15] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!