Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1669-1683.doi: 10.3724/SP.J.1006.2024.31073

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations

BI Jun-Ge1,2,**(), ZENG Zhan-Kui1,2,**(), LI Qiong1,2, HONG Zhuang-Zhuang1,2, YAN Qun-Xiang1,2, ZHAO Yue1,2, WANG Chun-Ping1,2,*()   

  1. 1College of Agriculture, Henan University of Science and Technology / Henan Dryland Crop Germplasm Resources Utilization Engineering Research Center, Luoyang 471000, Henan, China
    2Shennong Laboratory, Zhengzhou 45000, Henan, China
  • Received:2023-11-30 Accepted:2024-01-31 Online:2024-07-12 Published:2024-03-02
  • Contact: *E-mail: chunpingw@163.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    Major Science and Technology of Henan Province Project “The Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project”(231100110300);Shennong Laboratory “First-Class Subject” project(SN01-2022-01)

Abstract:

We utilized a 55K single-nucleotide polymorphism (55K SNP) array and diversity array technology (DArT) to identify QTLs for grain protein content (GPC), wet gluten content (WGC), and sedimentation value (SV) in two F6 recombinant inbred lines derived from Avocet/Chilero and Avocet/Huites. Sixty-eight QTLs were identified related to grain protein content, wet gluten content, and settlement value, explaining 3.60%-22.53% of the phenotypic variances. Fourteen QTLs were found to be present in multiple environments, located on chromosomes 3A(2), 4D, 5D(2), 6A(8), and 7B, respectively. Additionally, seven QTLs clusters were detected on chromosomes 3A, 3D, 4B, 5D, 6A(2), and 7B, respectively. Two stable QTL clusters, C3A and C6A.2, identified in the physical intervals of 9.32-60.01 Mb and 38.47-82.95 Mb, respectively, were significantly associated with grain protein content and wet gluten content. These clusters accounted for 6.55%-14.21% and 3.83%-22.53% of the phenotypic variances for grain protein content, wet gluten content, and sedimentation value. Meanwhile, a total of 16 candidate genes associated with grain protein content were predicted within the two stable QTL clusters. Moreover, two KASP marker, CGPC-6A-KASP-1 and CGPC-6A-KASP-2, were developed based on the candidate genes. The findings of this study provide support for the identification of new QTL and KASP markers that can contribute to the genetic improvement of grain quality-related traits in wheat. These results also offer valuable insights for marker-assisted breeding in wheat.

Key words: wheat, grain protein content, QTL mapping, KASP marker

Table 1

Phenotypic variation analysis of quality-related traits in two F6 RIL populations and parents in different environments"

群体
Population
性状
Trait
环境
Env.
亲本Parents RIL家系 广义遗传力
H2
基因型
Genotype
(G)
环境
Environment
(E)
基因型×
环境
G × E
Avocet Chilero Huites 范围
Range
平均值±标准误
Mean ± SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
AC
Population
GPC
(%)
E1 13.88** 14.95** - 12.19-17.16 14.52±0.90 0.14 ‒0.06 6.20 0.82 431.42** 6,867.82** 97.12**
E2 13.94** 14.93** - 13.78-18.51 15.66±0.88 0.62 0.90 5.62
E3 14.90* 15.42* - 12.42-18.94 15.27±1.29 0.20 ‒0.21 8.45
E4 13.62** 16.05** - 12.49-16.80 14.87±0.86 ‒0.11 ‒0.20 5.78
WGC
(%)
E1 29.57** 33.15** - 26.50-36.85 31.99±2.17 ‒0.38 ‒0.31 6.78 0.85 338.43** 3,464.10** 59.57**
E2 30.48** 33.39** - 29.57-39.80 34.24±2.01 0.27 0.33 5.87
E3 31.48* 34.29* - 26.04-40.40 32.78±2.86 0.03 ‒0.28 8.72
E4 30.53** 35.03** - 26.33-36.63 32.48±2.08 ‒0.55 ‒0.18 6.40
SV
(%)
E1 25.74** 35.61** - 21.76-39.02 30.36±3.53 ‒0.18 ‒0.19 11.63 0.84 233.56** 1,648.79** 42.91**
E2 27.90** 34.13** - 24.27-43.47 32.95±3.22 0.12 0.39 9.77
E3 29.47** 38.65** - 22.29-46.82 33.21±4.86 0.06 ‒0.24 14.63
E4 31.81** 39.49** - 22.74-40.29 32.62±3.67 ‒0.49 ‒0.11 11.25
AH
Population
GPC
(%)
E5 14.68* - 15.29* 12.56-16.73 14.83±0.88 0.08 ‒0.58 5.93 0.88 952.79** 1,077.77** 132.19**
E6 15.12** - 16.04** 12.10-18.66 14.99±1.34 0.25 ‒0.08 8.94
E7 14.69** - 16.03** 13.13-17.89 14.83±0.92 0.33 ‒0.13 6.20
WGC
(%)
E5 30.26 - 30.27 26.89-36.27 31.98±2.03 ‒0.04 ‒0.61 6.35 0.90 446.82** 285.39** 49.13**
E6 31.71** - 34.76** 25.64-39.26 32.06±2.80 0.13 ‒0.35 8.73
E7 31.06** - 34.86** 28.30-38.52 32.31±2.06 0.13 ‒0.39 6.38
SV
(%)
E5 39.43* - 43.24* 19.39-43.24 31.68±3.79 0.04 0.80 11.96 0.83 272.28** 1,075.43** 54.59**
E6 34.52* - 36.38* 22.55-46.57 33.83±4.96 0.22 ‒0.28 14.66
E7 29.78* - 37.07* 24.81-43.81 33.89±3.57 ‒0.08 ‒0.14 10.53

Fig. 1

Frequency distribution of grain quality-related traits in AC (a) and AH (b) populations Different fill shapes and lines represent different environments. BLUE: the best linear unbiased estimation. Abbreviations are the same as those given in Table 1."

Fig. 2

Correlation coefficients of grain quality-related traits in AC (a) and AH (b) populations in different environments The gradient from white to black indicates a positive to negative correlation. E1GPC, E1WGC, E1SV, E2GPC, E2WGC, E2SV, E3GPC, E3WGC, E3SV, E4GPC, E4WGC, E4SV, E5GPC, E5WGC, E5SV, E6GPC, E6WGC, E6SV, E7GPC, E7WGC, and E7SV represent grain protein content, wet gluten content, and sedimentation value in E1, E2, E3, E4, E5, E6, and E7, respectively. *: P < 0.05."

Table S1

QTLs of quality-related traits in AC population"

性状
Trait
QTL 环境
Environment
遗传位置
Genetic position (cM)
侧翼标记
Flanking marker
LOD值
LOD value
表型贡献率
PVE (%)
加性效应
Additive
物理区间
Physical intervals (Mb)
优势等位基因
Favorable allele
GPC QGPC.haust-AC-1B E4 6.00 AX-94871279-AX-111525685 6.20 15.70 ‒0.33 670.39-670.78 Chilero
QGPC.haust-AC-2B E4 46.00 AX-109885265-AX-108951217 4.76 11.77 ‒0.27 782.02-799.25 Chilero
QGPC.haust-AC-3A BLUE 271.00 AX-111543258-AX-111142459 3.54 8.77 ‒0.22 27.88-57.73 Chilero
QGPC.haust-AC-3D.1 E1 94.00 AX-108729781-AX-110834100 8.83 13.98 ‒0.44 537.29-552.24 Chilero
QGPC.haust-AC-3D.2 E3 189.00 AX-110808052-AX-95632197 2.69 5.57 ‒0.33 533.94-2.63 Chilero
QGPC.haust-AC-6A.1 E1 12.00 AX-109042664-AX-108939533 6.11 8.95 0.40 61.56-61.89 Avocet
E4 13.00 AX-109042664-AX-108939533 4.08 9.88 0.30 61.56-61.89 Avocet
QGPC.haust-AC-6A.2 E3 42.00 AX-94591230-AX-111122628 9.74 21.05 0.61 38.47-71.43 Avocet
BLUE 42.00 AX-94591230-AX-111122628 8.92 22.53 0.35 38.47-71.43 Avocet
QGPC.haust-AC-7B E3 54.00 AX-110412930-AX-108833738 3.82 7.52 ‒0.38 643.48-653.98 Chilero
BLUE 54.00 AX-110412930-AX-108833738 3.70 8.67 ‒0.22 643.48-653.98 Chilero
WGC QWGC.haust-AC-3A.1 E2 274.00 AX-111543258-AX-111142459 4.22 10.12 ‒0.77 27.88-57.73 Chilero
QWGC.haust-AC-3A.2 E3 237.00 AX-89583101-AX-109397508 5.98 10.64 ‒0.96 29.03-25.05 Chilero
BLUE 237.00 AX-89583101-AX-109397508 5.50 14.21 ‒0.62 29.03-25.05 Chilero
QWGC.haust-AC-3D.1 E1 96.00 AX-108729781-AX-110834100 5.91 16.34 ‒0.87 537.29-552.24 Chilero
QWGC.haust-AC-3D.2 E3 163.00 AX-110056468-AX-109831081 3.60 6.50 ‒0.74 349.68-342.70 Chilero
QWGC.haust-AC-4A E4 78.00 AX-110907767-AX-109440196 3.45 5.32 0.54 618.93-619.31 Avocet
QWGC.haust-AC-4B E3 24.00 AX-109986770-AX-110076607 5.11 9.22 ‒0.94 12.49-11.43 Chilero
QWGC.haust-AC-5D.1 E4 1.00 AX-108775585-AX-111011707 7.74 13.80 ‒0.83 556.11-547.81 Chilero
QWGC.haust-AC-5D.2 E4 76.00 AX-110476332-AX-109394742 7.62 13.32 ‒0.81 6.39-12.58 Chilero
QWGC.haust-AC-6A E3 42.00 AX-94591230-AX-111122628 9.39 17.62 1.22 38.47-71.43 Avocet
E4 42.00 AX-94591230-AX-111122628 4.05 6.24 0.54 38.47-71.43 Avocet
BLUE 42.00 AX-94591230-AX-111122628 7.65 20.45 0.74 38.47-71.43 Avocet
QWGC.haust-AC-6B E2 161.00 AX-109306114-AX-110400029 3.30 8.79 0.71 11.98-681.42 Avocet
SV QSV.haust-AC-1D E1 47.00 AX-111561523-AX-111535968 3.70 9.10 1.19 418.20-484.43 Avocet
QSV.haust-AC-2B.1 E4 134.00 AX-110064360-AX-111012832 5.19 7.22 ‒1.21 569.13-554.92 Chilero
QSV.haust-AC-2B.2 BLUE 94.00 AX-108837623-AX-89735721 4.69 11.69 ‒0.96 705.68-725.96 Chilero
QSV.haust-AC-3A.1 E2 278.00 AX-111543258-AX-111142459 3.17 10.27 ‒0.98 27.88-57.73 Chilero
QSV.haust-AC-3A.2 E3 236.00 AX-110520445-AX-89583101 3.10 9.30 ‒1.23 37.35-29.03 Chilero
BLUE 237.00 AX-89583101-AX-109397508 4.74 11.92 ‒0.98 29.03-25.05 Chilero
QSV.haust-AC-4B E3 24.00 AX-109986770-AX-110076607 3.52 10.64 ‒1.39 12.49-11.43 Chilero
QSV.haust-AC-6A.1 E1 42.00 AX-94591230-AX-111122628 5.50 13.30 1.21 38.47-71.43 Avocet
E2 42.00 AX-94591230-AX-111122628 3.46 9.92 0.94 38.47-71.43 Avocet
E3 42.00 AX-94591230-AX-111122628 4.70 14.38 1.52 38.47-71.43 Avocet
BLUE 42.00 AX-94591230-AX-111122628 5.91 15.09 1.09 38.47-71.43 Avocet
QSV.haust-AC-6A.2 E4 11.00 AX-111504079-AX-109974361 4.35 5.72 1.22 59.69-60.97 Avocet
QSV.haust-AC-7A.1 E4 173.00 AX-109473518-AX-109364614 8.14 11.43 ‒1.56 692.77-701.31 Chilero
QSV.haust-AC-7A.2 E4 204.00 AX-109947373-AX-111089494 11.07 16.16 1.78 731.14-708.47 Avocet
QSV.haust-AC-7B E1 17.00 AX-109306944-AX-95098493 5.07 12.30 1.17 54.79-708.12 Avocet
QSV.haust-AC-7D E2 55.00 AX-109301921-AX-111607406 2.68 7.56 ‒0.83 12.57-16.88 Chilero

Table S2

QTLs of quality-related traits in AH population"

性状
Trait
QTL 环境
Environment
遗传位置
Genetic position (cM)
侧翼标记
Flanking marker
LOD值
LOD value
表型贡献率
PVE (%)
加性效应
Additive
物理区间
Physical interval (Mb)
优势等位基因
Favorable allele
GPC QGPC.haust-AH-2A E6 800.00 DArT3958592-SNP1019498 3.16 5.98 ‒0.37 605.66-625.28 Huites
QGPC.haust-AH-2B.1 E7 647.00 DArT1128457-DArT3533008 4.24 9.29 ‒0.31 784.26-784.04 Huites
QGPC.haust-AH-2B.2 BLUE 242.00 DArT3021488-DArT1079407 2.64 5.44 ‒0.27 97.34-55.23 Huites
QGPC.haust-AH-3A.1 E5 530.00 DArT3064883-DArT1223327 5.61 15.48 ‒0.41 476.31-435.80 Huites
QGPC.haust-AH-3A.2 E6 581.00 DArT1254451-SNP980942 3.56 6.55 ‒0.39 46.17-46.00 Huites
QGPC.haust-AH-3A.3 E6 774.00 DArT3958575-DArT3946190 3.60 7.00 0.41 32.97-9.32 Avocet
QGPC.haust-AH-3A.4 E7 519.00 SNP1213892-SNP100357542 4.39 9.53 ‒0.31 521.30-544.19 Huites
QGPC.haust-AH-3A.5 BLUE 570.00 DArT100082954-DArT1013788 4.96 8.35 ‒0.34 60.01-54.94 Huites
QGPC.haust-AH-4D E7 25.00 DArT1107261-DArT1233229 2.71 5.34 ‒0.23 207.70-319.32 Huites
QGPC.haust-AH-5A.1 E5 394.00 SNP998276-SNP993328 3.41 9.48 0.32 569.66-570.19 Avocet
QGPC.haust-AH-5A.2 E6 117.00 DArT1205298-DArT1120172 3.76 7.03 ‒0.40 29.63-26.75 Huites
QGPC.haust-AH-6A.1 E6 363.00 SNP4910893-SNP1096119 4.98 10.15 0.54 76.63-77.89 Avocet
BLUE 364.00 SNP4910893-SNP1096119 6.99 12.26 0.45 76.63-77.89 Avocet
QGPC.haust-AH-6A.2 E7 313.00 DArT3946508-SNP1151487 4.81 11.45 0.41 586.30-202.91 Avocet
QGPC.haust-AH-6A.3 E7 431.00 SNP2358794-SNP1094001 2.83 6.23 ‒0.25 12.23-12.89 Huites
BLUE 426.00 DArT1233578-DArT4544113 3.51 5.84 ‒0.29 11.01-12.08 Huites
QGPC.haust-AH-7B BLUE 61.00 DArT1218440-SNP2253713 6.36 10.63 ‒0.38 1.38-1.44 Huites
WGC QWGC.haust-AH-1A BLUE 137.00 SNP1218247-DArT1665599 2.61 3.60 ‒0.48 500.84-499.81 Huites
QWGC.haust-AH-2A BLUE 394.00 SNP1240003-DArT2277504 4.36 8.01 ‒0.74 13.12-581.96 Huites
QWGC.haust-AH-2B E7 645.00 DArT1218607-DArT1128457 5.00 7.47 ‒0.65 776.57-234.76 Huites
QWGC.haust-AH-3A E7 519.00 SNP1213892-SNP100357542 6.70 9.47 ‒0.74 521.30-544.19 Huites
QWGC.haust-AH-3B BLUE 394.00 DArT1138136-DArT1695648 2.86 4.02 ‒0.50 123.60-113.98 Huites
QWGC.haust-AH-4D E5 63.00 DArT100270810-DArT1101297 3.80 12.80 ‒0.76 456.68-464.36 Huites
E7 75.00 DArT988923-DArT1111555 4.33 6.16 ‒0.59 469.43-479.62 Huites
BLUE 72.00 DArT1239874-DArT988923 5.08 7.57 ‒0.68 456.05-469.43 Huites
QWGC.haust-AH-5A BLUE 175.00 SNP4910949-DArT3941315 3.40 4.78 ‒0.55 415.19-430.25 Huites
QWGC.haust-AH-5B BLUE 242.00 DArT1100263-DArT1112093 6.61 9.71 0.78 658.56-658.45 Avocet
QWGC.haust-AH-5D E5 3.00 DArT3944272-DArT1695607 3.12 10.60 ‒0.71 5.79-25.49 Huites
E7 2.00 SNP1234827-DArT3944272 7.80 11.28 ‒0.81 4.36-5.79 Huites
BLUE 2.00 SNP1234827-DArT3944272 8.77 13.60 ‒0.94 4.36-5.79 Huites
QWGC.haust-AH-6A.1 E7 426.00 DArT1233578-DArT4544113 5.62 8.18 ‒0.70 11.01-12.08 Huites
QWGC.haust-AH-6A.2 E6 369.00 DArT3026247-DArT100000998 3.00 11.06 0.98 82.95-72.49 Avocet
E7 369.00 DArT3026247-DArT100000998 2.94 3.83 0.48 82.95-72.49 Avocet
QWGC.haust-AH-7B E7 61.00 DArT1218440-SNP2253713 6.32 8.79 ‒0.70 1.38-1.44 Huites
SV QSV.haust-AH-1A E7 123.00 DArT1207393-DArT4993415 2.60 8.90 ‒1.03 503.46-514.10 Huites
QSV.haust-AH-1B BLUE 825.00 SNP1090153-DArT3021227 3.04 8.08 ‒1.43 521.00-2.92 Huites
QSV.haust-AH-2B BLUE 29.00 SNP4988941-SNP1100485 2.59 9.29 ‒1.54 289.16-13.91 Huites
QSV.haust-AH-3B BLUE 150.00 SNP100526939-SNP4990292 3.03 5.61 ‒1.18 75.71-61.62 Huites
QSV.haust-AH-4A E6 664.00 DArT4537961-DArT1254189 3.04 7.98 ‒1.59 140.70-90.59 Huites
QSV.haust-AH-5D E7 0 SNP1234827-DArT3944272 3.54 11.89 ‒1.22 4.36-5.79 Huites
E5 4.00 DArT3944272-DArT1695607 4.22 9.91 ‒1.46 5.79-25.49 Huites
QSV.haust-AH-6A.1 E6 427.00 DArT1233578-DArT4544113 2.78 5.99 ‒1.41 11.01-12.08 Huites
QSV.haust-AH-6A.2 E6 365.00 SNP1096119-SNP100562777 6.33 14.90 2.93 77.89-138.23 Avocet
BLUE 364.00 SNP4910893-SNP1096119 3.81 6.90 1.43 76.63-77.89 Avocet
QSV.haust-AH-6B.1 E6 855.00 DArT3955224-SNP100542305 4.18 9.43 ‒1.75 298.01-715.70 Huites
QSV.haust-AH-6B.2 E5 53.00 DArT1159426-DArT4543423 3.59 10.77 ‒1.48 221.72-708.71 Huites
QSV.haust-AH-7B E5 75.00 SNP2253713-SNP2276097 2.81 15.01 ‒1.74 1.44-16.53 Huites

Table 2

Analysis of QTL clusters in two F6 RIL populations"

QTL簇
QTL cluster
性状
Trait
群体
Population
QTL 连锁标记
Linkage marker
平均LOD值
Average LOD value
平均表型贡献率
Average PVE (%)
环境
Environment
优势等位基因
Favorable allele
物理区间
Physical intervals (Mb)
C3A GPC/WGC/SV AC Pupulation QGPC.haust-AC-3A AX-111543258-AX-111142459 3.54 8.77 BLUE Chilero 9.32-60.01
AC Pupulation QWGC.haust-AC-3A.1 AX-111543258-AX-111142459 4.22 10.12 E2 Chilero
AC Pupulation QWGC.haust-AC-3A.2 AX-89583101-AX-109397508 5.74 12.43 E3/BLUE Chilero
AC Pupulation QSV.haust-AC-3A.1 AX-111543258-AX-111142459 3.17 10.27 E2 Chilero
AC Pupulation QSV.haust-AC-3A.2 AX-109397508-AX-110520445 3.92 10.61 E3/BLUE Chilero
AH Pupulation QGPC.haust-AH-3A.2 DArT1254451-SNP980942 3.56 6.55 E6 Huites
AH Pupulation QGPC.haust-AH-3A.3 DArT3958575-DArT3946190 3.60 7.00 E6 Avocet
AH Pupulation QGPC.haust-AH-3A.5 DArT100082954-DArT1013788 4.96 8.35 BLUE Huites
C3D GPG/WGC AC Pupulation QGPC.haust-AC-3D.1 AX-108729781-AX-110834100 8.83 13.98 E1 Chilero 537.29-552.24
AC Pupulation QWGC.haust-AC-3D.1 AX-108729781-AX-110834100 5.91 16.34 E1 Chilero
C4B WGC/SV AC Pupulation QWGC.haust-AC-4B AX-109986770-AX-110076607 5.11 9.22 E3 Chilero 11.43-12.49
AC Pupulation QSV.haust-AC-4B AX-109986770-AX-110076607 3.52 10.64 E3 Chilero
C5D WGC/SV AC Pupulation QWGC.haust-AC-5D.2 AX-110476332-AX-109394742 7.62 13.32 E4 Chilero 4.36-25.49
AH Pupulation QWGC.haust-AH-5D SNP1234827-DArT1695607 6.56 11.83 E5/E7/BLUE Huites
AH Pupulation QSV.haust-AH-5D SNP1234827-DArT1695607 3.88 10.90 E5/E7 Huites
C6A.1 GPC/WGC/SV AH Pupulation QGPC.haust-AH-6A.3 DArT1233578-SNP1094001 3.17 6.04 E7/BLUE Huites 11.01-12.89
AH Pupulation QWGC.haust-AH-6A.1 DArT1233578-DArT4544113 5.62 8.18 E7 Huites
AH Pupulation QSV.haust-AH-6A.1 DArT1233578-DArT4544113 2.78 5.99 E6 Huites
C6A.2 GPC/WGC/SV AC Pupulation QGPC.haust-AC-6A.1 AX-109042664-AX-108939533 5.10 9.42 E1/E4 Avocet 38.47-82.95
AC Pupulation QGPC.haust-AC-6A.2 AX-94591230-AX-111122628 9.33 21.79 E3/BLUE Avocet
AC Pupulation QWGC.haust-AC-6A AX-94591230-AX-111122628 7.03 14.77 E3/E4/BLUE Avocet
AC Pupulation QSV.haust-AC-6A.1 AX-94591230-AX-111122628 4.89 13.17 E1/E2/E3/BLUE Avocet
AC Pupulation QSV.haust-AC-6A.2 AX-111504079-AX-109974361 4.35 5.72 E4 Avocet
AH Pupulation QGPC.haust-AH-6A.1 SNP4910893-SNP1096119 5.99 11.21 E6/BLUE Avocet
AH Pupulation QWGC.haust-AH-6A.2 DArT3026247-DArT100000998 2.97 7.45 E6/E7 Avocet
AH Pupulation QSV.haust-AH-6A.2 SNP4910893-SNP1096119 3.81 6.90 BLUE Avocet
C7B GPC/WGC/SV AH Pupulation QGPC.haust-AH-7B DArT1218440-SNP2253713 6.36 10.63 BLUE Huites 1.38-16.53
AH Pupulation QWGC.haust-AH-7B DArT1218440-SNP2253713 6.32 8.79 E7 Huites
AH Pupulation QSV.haust-AH-7B SNP2253713-SNP2276097 2.81 15.01 E5 Huites

Fig. 3

QTL clusters of grain protein content, wet gluten content, and sedimentation value in two RIL population The segments in blue color of the two chromosomes present the intervals of the QTL clusters. The solid rectangles present the alleles from Chilero or Huites, and the blank rectangles indicate the alleles from Avocet. QTL of different traits from different populations are represented by different colors."

Table S3

Screening for candidate gene information"

QTL簇
QTL cluster
基因
Gene
物理位置
Physical position (bp)
基因注释
Gene annotation
表达部位
expression location
C3A TraesCS3A02G027500 14764482-14766910 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G028600 15294546-15298077 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 籽粒 Grain
TraesCS3A02G028800 15302528-15304140 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 籽粒 Grain
TraesCS3A02G029300 15477245-15478646 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G029500 15603607-15604989 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G030000 15779481-15780912 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G031400 17257262-17258628 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G032200 17621292-17623525 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 穗部 Spike
TraesCS3A02G073400 45592602-45603876 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 籽粒 Grain
TraesCS3A02G077900 50382036-50384496 含NAC结构域的蛋白质 NAC domain-containing protein 籽粒 Grain
TraesCS3A02G079200 51280020-51291788 泛素家族蛋白 Ubiquitin family protein 籽粒 Grain
C6A.2 TraesCS6A02G086800 555455195-55550804 E3泛素蛋白连接酶 E3 ubiquitin-protein ligase 籽粒 Grain
TraesCS6A02G087100 55709408-55710595 多泛素 Polyubiquitin 籽粒 Grain
TraesCS6A02G089000 57680849-57684135 核糖体生物发生调节蛋白样蛋白 Ribosome biogenesis regulatory protein-like protein 籽粒 Grain
TraesCS6A02G108300 77097709-77100361 含NAC结构域的蛋白质,推定 NAC domain-containing protein, putative 叶部 Leaf
TraesCS6A02G112400 81257411-81259132 多泛素 Polyubiquitin 籽粒 Grain

Table 3

Designed primer sequence of KASP molecular marker"

KASP标记
KASP tag
引物
Primer
引物序列
Primer sequence (5′-3′)
CGPC-6A-KASP-1 通用反向引物
Universal reverse primers
CCT TAT GCG CCA ATC TTT TAT ACA
特异性正向引物
Specific forward primers
GAA GGT GAC CAA GTT CAT GCT TAG GGA GGC GTC CGT GGA A
GAA GGT CGG AGT CAA CGG ATT TAG GGA GGC GTC CGT GGA C
CGPC-6A-KASP-2 通用反向引物
Universal reverse primers
GCA TGG TAA TTG CAT ACA CGG G
特异性正向引物
Specific forward primer
GAA GGT GAC CAA GTT CAT GCT GCA TAA GGG CCA CTC ACA TAA C
GAA GGT CGG AGT CAA CGG ATT GCA TAA GGG CCA CTC ACA TAA T

Fig. 4

Allelic segregation and effect analysis of the CGPC-6A-KASP-1 (a) and CGPC-6A-KASP-2 (b) in natural population Black indicates the blank control. Orange indicates the A allele and blue indicates the C allele in Fig. 4-a. Orange indicates the C allele and blue indicates the T allele in Fig. 4-b. E8 and E9 represent the natural population planted at the Farm of Henan University of Science and Technology in 2020-2021 and 2021-2022. *: P < 0.05; **: P < 0.01."

Table 4

Grain quality-related traits QTLs on chromosomes 3A, 4D, 5D, and 6A from previous studies"

性状
Trait
染色体
Chr.
QTL 连锁标记
Linkage marker
物理位置
Physical position (Mb)
平均表型贡献率
Average PVE (%)
参考文献
Reference
GPC 6A QGpc.uhw-6A wsnp_Ex_c15268_23489498 535.52-583.20 [15]
6A QGpc-6A-2 D-1112857-S-2362461 51.40-64.18 10.15 [16]
6A qGPC.XX-6A.1 AX-110368218-AX-110368140 595.06-595.18 4.19 [18]
6A QNGPC.cau-6A 63.00-83.00 4.07 [44]
6A BS00046964_51 4.42 [45]
WGC 3A QWGC.hau-3A.1 AX-111674404-AX-109456846 739.32-740.02 1.98 [17]
3A QLWGC.cau-3A.1 wsnp_BE426222A_Ta_2_1 191.53 2.77 [44]
3A QLWGC.cau-3A.2 wsnp_Ku_c44089_51445136 401.71 3.92 [44]
3A QLWGC.cau-3A.3 BobWhite_c28464_814 484.64 3.06 [44]
3A QNWGC.cau-3A BS00078430_51 374.87 3.40 [44]
4D qWGC.XX-4D.1 AX-109282550-AX-110572006 16.43-19.18 12.50 [18]
5D QWGC.hau-5D.1 AX-109684926-AX-109455090 98.26-100.94 3.06 [17]
6A QWGC.hau-6A.1 AX-109418600-AX-110992859 547.81-549.05 4.42 [17]
6A QWGC.hau-6A.2 AX-111504079-AX-109418640 59.69-81.31 6.92 [17]
6A QNWGC.cau-6A 73.00-83.00 3.98 [44]
6A BS00046964_51 4.42 [45]
SV 3A Qsdss-3A AX-110439700-AX-109956297 580.2-649.4 2.47 [46]
5D Qsdss-5D INDEL1489469-INDEL8181683 1.50-8.20 8.11 [46]
6A QSv-6A-2.1 wPt-731556-D-3952327 50.35-50.34 13.34 [16]
6A QSv-6A-2.2 D-1112857-D-1092061 51.40-63.19 11.08 [16]
6A QSV.hau-6A.1 AX-109843320-AX-111089021 8.61-14.39 11.57 [17]
6A QSV.hau-6A.2 AX-109934181-AX-110547197 580.32-598.05 12.18 [17]
[1] Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 5: 291-317.
[2] 韩文燕, 王凤成, 魏雪, 王晓玲. 小麦分级改善小麦及小麦粉品质的研究. 河南工业大学学报(自然科学版), 2022, 43(4): 85-91.
Han W Y, Wang F C, Wei X, Wang X L. Study on improving the quality of wheat and wheat flour by wheat grading. J Henan Univ Technol (Nat Sci Edn), 2022, 43(4): 85-91 (in Chinese with English abstract).
[3] Hernández Z J E, Figueroa J D C, Rayas-Duarte P, Martínez-Flores H E, Arámbula G V, Luna G B, Peña R J. Influence of high and low molecular weight glutenins on stress relaxation of wheat kernels and the relation to sedimentation and rheological properties. J Cereal Sci, 2012, 55: 344-350.
[4] 李晓丽, 姜兰芳, 马小飞, 王敏, 曹勇, 郝建宇, 张定一, 姬虎太. 基于主成分分析的强筋小麦加工品质综合评价. 麦类作物学报, 2022, 42: 1473-1483.
Li X L, Jiang L F, Ma X L, Wang M, Cao Y, Hao J Y, Zhang D Y, Ji H T. Comprehensive processing quality evaluation of strong gluten wheat based on principal component analysis. J Triticeae Crops, 2022, 42: 1473-1483 (in Chinese with English abstract).
[5] 沈业松, 王歆, 顾正中, 杨子博, 詹秋文. 296份黄淮麦区小麦品种资源在江苏淮北地区的品质分析. 浙江农业学报, 2018, 30: 1617-1623.
doi: 10.3969/j.issn.1004-1524.2018.10.01
Shen Y S, Wang X, Gu Z Z, Yang Z B, Zhan Q W. Quality analysis of 296 wheat varieties from the Huang-Huai wheat region planted in Huaibei area of Jiangsu. Acta Agric Zhejiangensis, 2018, 30: 1617-1623 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2018.10.01
[6] 李桂萍, 张根生, 巴青松, 张改生. 杂种小麦品质性状的性状相关和主成分分析. 浙江农业学报, 2016, 28: 1447-1453.
doi: 10.3969/j.issn.1004-1524.2016.09.01
Li G P, Zhang G S, Ba Q S, Zhang G S. Correlation analysis and principal component analysis on quality traits in hybrid wheat. Acta Agric Zhejiangensis, 2016, 28: 1447-1453 (in Chinese with English abstract).
[7] Ma M, Li Y, Xue C, Xiong W, Peng Z, Han X, Ju H, He Y. Current situation and key parameters for improving wheat quality in China. Front Plant Sci, 2021, 12: 638525.
[8] 黄梦豪, 刘天相, 强琴琴, 李春莲, 王中华. 基于SNP和SSR标记的小麦品质性状的QTL定位. 分子植物育种, 2019, 17: 3966-3973.
Hang M H, Liu T X, Qiang Q Q, Li C L, Wang Z H. QTL mapping of wheat quality traits based on SNP and SSR markers. Mol Plant Breed, 2019, 17: 3966-3973 (in Chinese with English abstract).
[9] Li J, Cui F, Ding A M, Zhao C H, Wang X Q, Wang L, Bao Y G, Qi X L, Li X F, Gao J R, Feng D S, Wang H G. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica, 2012, 183: 207-226.
[10] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135
[11] Doerge R W. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet, 2002, 3: 43-52.
doi: 10.1038/nrg703 pmid: 11823790
[12] Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri M S, Mantovani E E, McClean P E, Deckard E L, Elias E, Schatz B, Xu S S, Mergoum M. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor Appl Genet, 2015, 128: 893-912.
doi: 10.1007/s00122-015-2478-0 pmid: 25740563
[13] 胡文静, 裔新, 李东升, 张春梅, 高德荣, 张勇. 扬麦13/C615重组自交系籽粒蛋白质含量和硬度性状QTL分析. 麦类作物学报, 2021, 41: 930-936.
Hu W J, Yi X, Li D S, Zhang C M, Gao D R, Zhang Y. Genetic analysis and QTL mapping for grain protein content and grain hardness using the RIL population of Yangmai 13/C615. J Triticeae Crops, 2021, 41: 930-936 (in Chinese with English abstract).
[14] 郭利建, 王竹林, 汪世娟, 刘振华, 刘香利, 胡胜武, 赵惠贤. 基于SRAP和SSR标记的小麦品质相关性状的QTL定位. 麦类作物学报, 2016, 36: 1275-1282.
Guo L J, Wang Z L, Wang S J, Liu Z H, Liu X L, Hu S W, Zhao H X. QTL mapping of wheat grain quality traits based on SRAP and SSR marker. J Triticeae Crops, 2016, 36: 1275-1282 (in Chinese with English abstract).
[15] Fatiukha A, Filler N, Lupo I, Lidzbarsky G, Klymiuk V, Korol A B, Pozniak C, Fahima T, Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. Theor Appl Genet, 2020, 133: 119-131.
doi: 10.1007/s00122-019-03444-8 pmid: 31562566
[16] Guo Y, Zhang G, Guo B, Qu C, Zhang M, Kong F, Zhao Y, Li S. QTL mapping for quality traits using a high-density genetic map of wheat. PLoS One, 2020, 15: e0230601.
[17] 王姗. 小麦面团拉伸特性和淀粉特性相关性状的QTL定位. 河南农业大学硕士学位论文, 河南郑州, 2023.
Wang S. QTL Mapping for Traits Related to Dough Tensile Characteristics and Starch Characteristics of Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2023 (in Chinese with English abstract).
[18] 周锋. 基于两个群体对小麦籽粒性状及其稳定性和品质性状的QTL分析. 西北农林科技大学硕士学位论文, 陕西咸阳, 2022.
Zhou F. QTL Analysis of Grain Traits and Stability Quality Traits of Wheat Based on Two RILs Populations. MS Thesis of Northwest Agriculture & Forestry University, Xianyang, Shaanxi, China, 2022 (in Chinese with English abstract).
[19] Kumar A, Jain S, Elias E M, Ibrahim M, Sharma L K. An overview of QTL identification and marker-assisted selection for grain protein content in wheat. In: Sengar R S, Ashu S, eds. Eco-Friendly Agro-biological Techniques for Enhancing Crop Productivity. Singapore: Springer Singapore Pte. 2018. pp 245-274.
[20] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, Zinc, and Iron content in wheat. Science, 2006, 314: 1298-1301.
doi: 10.1126/science.1133649 pmid: 17124321
[21] Jin X, Feng B, Xu Z, Fan X, Liu J, Liu Q, Zhu P, Wang T. TaAAP6-3B, a regulator of grain protein content selected during wheat improvement. BMC Plant Biol, 2018, 18: 71.
doi: 10.1186/s12870-018-1280-y pmid: 29685104
[22] Gadaleta A, Nigro D, Giancaspro A, Blanco A. The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genom, 2011, 11: 665-670.
[23] Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G. Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol, 2009, 151: 2133-2144.
[24] Guo D, Hou Q, Zhang R, Lou H, Li Y, Zhang Y, You M, Xie C, Liang R, Li B. Over-expressing TaSPA-B reduces prolamin and starch accumulation in wheat (Triticum aestivum L.) grains. Int J Mol Sci, 2020, 21: 3257.
[25] Gao Y, An K, Guo W, Chen Y, Zhang R, Zhang X, Chang S, Vincenzo R, Jin F, Cao X, Xin M, Peng H, Hu Z, Guo W, Du J, Ni Z, Sun Q, Yao Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell, 2021, 33: 603-622.
[26] Li J, Xie L, Tian X, Liu S, Xu D, Jin H, Song J, Dong Y, Zhao D, Li G, Li Y, Zhang Y, Zhang Y, Xia X, He Z, Cao S. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant J, 2021, 108: 829-840.
[27] Shen L, Luo G, Song Y, Xu J, Ji J, Zhang C, Gregová E, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat. Plant Biotechn J, 2021, 19: 992-1007.
[28] Jiang P, Zhang P, Wu L, He Y, Li C, Ma H, Zhang X. Linkage and association mapping and Kompetitive allele-specific PCR marker development for improving grain protein content in wheat. Theor Appl Genet, 2021, 134: 3563-3575.
doi: 10.1007/s00122-021-03913-z pmid: 34374830
[29] Sun L J, Liu M L, Xu L L, Li X F, Mao X D. Wheat sedimentation value determination based on Near Infrared Spectroscopy. Adv Mater Res, 2013, 605: 996-1000.
[30] 陈峰, 何中虎, 崔党群, 赵武善, 张艳, 王德森. 利用近红外透射光谱技术测定小麦品质性状的研究. 麦类作物学报, 2003, 23: 1-4.
Chen F, He Z H, Cui D Q, Zhao W S, Zhang Y, Wang D S. Measurement of wheat quality traits by Near Infrared Transmittance Spectrometer. J Triticeae Crops, 2003, 23: 1-4 (in Chinese with English abstract).
[31] 陈泠, 王文学, 陶越, 佟汉文. 近红外法测定小麦品质的准确性分析. 农业科学, 2020, 10(12): 5.
Chen L, Wang W X, Tao Y, Tong H W. Accuracy analysis of quality characteristics by near-infrared spectrometer. J Agric Sci, 2020, 10(12): 5 (in Chinese with English abstract).
[32] Wang Y, Zeng Z, Li J, Zhao D, Zhao Y, Peng C, Lan C, Wang C. Identification and validation of new quantitative trait loci for spike-related traits in two RIL populations. Mol Breed, 2023, 43: 64.
[33] Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, McCouch S R, Cho Y G, Yano M, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[34] Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet, 2021, 134: 171-189.
[35] Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[36] Zeng Z, Guo C, Yan X, Song J, Wang C, Xu X, Hao Y. QTL mapping and KASP marker development for seed vigor related traits in common wheat. Front Plant Sci, 2022, 13: 994973.
[37] Ren P, Zhao D, Zeng Z, Yan X, Zhao Y, Lan C, Wang C. Pleiotropic effect analysis and marker development for grain zinc and iron concentrations in spring wheat. Mol Breed, 2022, 42: 49.
[38] Avni R, Zhao R, Pearce S, Jun Y, Uauy C, Tabbita F, Slade A, Dubcovsky J, Distelfeld A. Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 2014, 239: 313-324.
doi: 10.1007/s00425-013-1977-y pmid: 24170335
[39] Harrington S A, Overend L E, Cobo N, Borrill P, Uauy C. Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biol, 2019, 19: 407.
doi: 10.1186/s12870-019-2022-5 pmid: 31533618
[40] Zhang G, Chen R Y, Shao M, Bai G, Seabourn B W. Genetic analysis of end-use quality traits in wheat. Crop Sci, 2020, 61: 1709-1723.
[41] Gao L, Meng C, Yi T, Xu K, Cao H, Zhang S, Yang X, Zhao Y. Genome-wide association study reveals the genetic basis of yield-and quality-related traits in wheat. BMC Plant Biol, 2021, 21: 144.
doi: 10.1186/s12870-021-02925-7 pmid: 33740889
[42] Kumari P, De N, Kumari A K A. Genetic variability, correlation and path coefficient analysis for yield and quality traits in wheat (Triticum aestivum L.). Int J Curr Microb Appl Sci, 2020, 9: 826-832.
[43] 张平平, 姚金保, 王化敦, 宋桂成, 姜朋, 张鹏, 马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系. 作物学报, 2020, 46: 491-502.
doi: 10.3724/SP.J.1006.2020.91050
Zhang P P, Yao J B, Wang H D, Song G C, Jiang P, Zhang P, Ma H X. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality. Acta Agron Sin, 2020, 46: 491-502 (in Chinese with English abstract).
[44] Lou H, Zhang R, Liu Y, Guo D, Zhai S, Chen A, Zhang Y, Xie C, You M, Peng H, Liang R, Ni Z, Sun Q, Li B. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theor Appl Genet, 2021, 134: 399-418.
[45] Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, Guo X, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J, 2019, 17: 2106-2122.
[46] Chang S, Chen Q, Yang T, Li B, Xin M, Su Z, Du J, Guo W, Hu Z, Liu J, Peng, H, Ni Z, Sun Q, Yao Y. Pinb-D1p is an elite allele for improving end-use quality in wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 4469-4481.
[47] Würschum T, Leiser W L, Kazman E, Longin C F H. Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theor Appl Genet, 2016, 129: 1685-1696.
doi: 10.1007/s00122-016-2732-0 pmid: 27225454
[48] 马冬云, 张艳, 夏先春, Morris C F, 何中虎. Puroindoline b位点近等基因系对小麦面粉及面包和馒头品质的影响. 作物学报, 2010, 36: 261-266.
doi: 10.3724/SP.J.1006.2010.00261
Ma D Y, Zhang Y, Xia X C, Morris C F, He Z H. Wheat flour, pan bread, and steamed bread qualities of common wheat near- isogenic lines differing in Puroindoline b alleles. Acta Agron Sin, 2010, 36: 261-266 (in Chinese with English abstract).
[49] Boehm J J D, Ibba M I, Kiszonas A, See D R, Skinner D Z, Morris C F. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). J Cereal Sci, 2017, 77: 73-83.
[50] Balyan H S, Gahlaut V, Kumar A, Jaiswal V, Dhariwal R, Tyagi S, Agarwal P, Kumari S, Gupta P K. Nitrogen and phosphorus use efficiencies in wheat: physiology, phenotyping, genetics, and breeding. Plant Breed Rev, 2016, 40: 167-234.
[51] Nigro D, Fortunato S, Giove S L, Paradiso A, Gu Y Q, Blanco A, Pinto A C D, Gadaleta A. Glutamine synthetase in durum wheat: genotypic variation and relationship with grain protein content. Front Plant Sci, 2016, 7: 971.
doi: 10.3389/fpls.2016.00971 pmid: 27468287
[52] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931-2944.
[53] 陆海燕, 周玲, 林峰, 王蕊, 王凤格, 赵涵. 基于高通量测序开发玉米高效KASP分子标记. 作物学报, 2019, 45: 872-878.
doi: 10.3724/SP.J.1006.2019.83067
Lu H Y, Zhou L, Lin F, Wang R, Wang F G, Zhao H. Development of efficient KASP molecular markers based on high throughput sequencing in maize. Acta Agron Sin, 2019, 45: 872-878 (in Chinese with English abstract).
[54] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48: 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346-1356 (in Chinese with English abstract).
[55] 杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
Yang Q Q, Tang J Q, Zhang C Q, Gao J P, Liu Q Q. Application and prospect of KASP marker technology in main crops. Biotechnol Bull, 2022, 38: 58-71 (in Chinese with English abstract).
[1] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[2] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[3] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[4] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[5] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[6] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[7] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[8] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[9] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[10] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[11] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[12] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[13] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[14] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[15] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!